IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v210y2011i3p552-558.html
   My bibliography  Save this article

Analysis of order-up-to-level inventory systems with compound Poisson demand

Author

Listed:
  • Babai, M.Z.
  • Jemai, Z.
  • Dallery, Y.

Abstract

We analyse a single echelon single item inventory system where the demand and the lead time are stochastic. Demand is modelled as a compound Poisson process and the stock is controlled according to a continuous time order-up-to (OUT) level policy. We propose a method for determining the optimal OUT level for cost oriented inventory systems where unfilled demands are backordered. We first establish an analytical characterization of the optimal OUT level. The actual calculation is based on a numerical procedure the accuracy of which can be set as highly as desired. By means of a numerical investigation, we show that the method is very efficient in calculating the optimal OUT level. We compare our results with those obtained using an approximation proposed in the literature and we show that there is a significant difference in accuracy for slow moving items. Our work allows insights to be gained on stock control related issues for both fast and slow moving Stock Keeping Units (SKUs).

Suggested Citation

  • Babai, M.Z. & Jemai, Z. & Dallery, Y., 2011. "Analysis of order-up-to-level inventory systems with compound Poisson demand," European Journal of Operational Research, Elsevier, vol. 210(3), pages 552-558, May.
  • Handle: RePEc:eee:ejores:v:210:y:2011:i:3:p:552-558
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00645-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kamran Moinzadeh, 1989. "Operating Characteristics of the (S - 1, S) Inventory System with Partial Backorders and Constant Resupply Times," Management Science, INFORMS, vol. 35(4), pages 472-477, April.
    2. Zied Babai, M. & Syntetos, Aris A. & Teunter, Ruud, 2010. "On the empirical performance of (T, s, S) heuristics," European Journal of Operational Research, Elsevier, vol. 202(2), pages 466-472, April.
    3. C Larsen & A Thorstenson, 2008. "A comparison between the order and the volume fill rate for a base-stock inventory control system under a compound renewal demand process," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(6), pages 798-804, June.
    4. Evan L. Porteus, 1985. "Numerical Comparisons of Inventory Policies for Periodic Review Systems," Operations Research, INFORMS, vol. 33(1), pages 134-152, February.
    5. Janssen, F.B.S.L.P., 1998. "Inventory management systems : Control and information issues," Other publications TiSEM 710d54d2-5447-4e2f-bb60-0, Tilburg University, School of Economics and Management.
    6. Porras, Eric & Dekker, Rommert, 2008. "An inventory control system for spare parts at a refinery: An empirical comparison of different re-order point methods," European Journal of Operational Research, Elsevier, vol. 184(1), pages 101-132, January.
    7. Teunter, R.H. & Syntetos, A.A. & Babai, M.Z., 2010. "Determining order-up-to levels under periodic review for compound binomial (intermittent) demand," European Journal of Operational Research, Elsevier, vol. 203(3), pages 619-624, June.
    8. Strijbosch, L.W.G. & Moors, J.J.A., 2006. "Modified normal demand distributions in (R, S)-inventory control," European Journal of Operational Research, Elsevier, vol. 172(1), pages 201-212, July.
    9. Blyth C. Archibald & Edward A. Silver, 1978. "(s, S) Policies Under Continuous Review and Discrete Compound Poisson Demand," Management Science, INFORMS, vol. 24(9), pages 899-909, May.
    10. G. J. Feeney & C. C. Sherbrooke, 1966. "The (S - 1, S) Inventory Policy Under Compound Poisson Demand," Management Science, INFORMS, vol. 12(5), pages 391-411, January.
    11. Syntetos, Aris A. & Boylan, John E., 2006. "On the stock control performance of intermittent demand estimators," International Journal of Production Economics, Elsevier, vol. 103(1), pages 36-47, September.
    12. Willemain, Thomas R. & Smart, Charles N. & Shockor, Joseph H. & DeSautels, Philip A., 1994. "Forecasting intermittent demand in manufacturing: a comparative evaluation of Croston's method," International Journal of Forecasting, Elsevier, vol. 10(4), pages 529-538, December.
    13. Eric Smeitink, 1990. "A Note on "Operating Characteristics of the (S-1, S) Inventory System with Partial Backorders and Constant Resupply Times"," Management Science, INFORMS, vol. 36(11), pages 1413-1414, November.
    14. A A Syntetos & M Z Babai & Y Dallery & R Teunter, 2009. "Periodic control of intermittent demand items: theory and empirical analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(5), pages 611-618, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lolli, Francesco & Coruzzolo, Antonio Maria & Peron, Mirco & Sgarbossa, Fabio, 2022. "Age-based preventive maintenance with multiple printing options," International Journal of Production Economics, Elsevier, vol. 243(C).
    2. Tan, Ken Seng & Wei, Pengyu & Wei, Wei & Zhuang, Sheng Chao, 2020. "Optimal dynamic reinsurance policies under a generalized Denneberg’s absolute deviation principle," European Journal of Operational Research, Elsevier, vol. 282(1), pages 345-362.
    3. Mohammed Hichame Benbitour & Evren Sahin & Yves Dallery, 2019. "The use of rush deliveries in periodic review assemble-to-order systems," Post-Print hal-01997380, HAL.
    4. Briskorn, Dirk & Zeise, Philipp & Packowski, Josef, 2016. "Quasi-fixed cyclic production schemes for multiple products with stochastic demand," European Journal of Operational Research, Elsevier, vol. 252(1), pages 156-169.
    5. Prak, Derk & Teunter, Rudolf & Babai, M. Z. & Syntetos, A. A. & Boylan, D, 2018. "Forecasting and Inventory Control with Compound Poisson Demand Using Periodic Demand Data," Research Report 2018010, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    6. Sgarbossa, Fabio & Peron, Mirco & Lolli, Francesco & Balugani, Elia, 2021. "Conventional or additive manufacturing for spare parts management: An extensive comparison for Poisson demand," International Journal of Production Economics, Elsevier, vol. 233(C).
    7. Kouki, Chaaben & Babai, M. Zied & Jemai, Zied & Minner, Stefan, 2019. "Solution procedures for lost sales base-stock inventory systems with compound Poisson demand," International Journal of Production Economics, Elsevier, vol. 209(C), pages 172-182.
    8. Lengu, D. & Syntetos, A.A. & Babai, M.Z., 2014. "Spare parts management: Linking distributional assumptions to demand classification," European Journal of Operational Research, Elsevier, vol. 235(3), pages 624-635.
    9. Sasanuma, Katsunobu & Hibiki, Akira & Sexton, Thomas, 2022. "An opaque selling scheme to reduce shortage and wastage in perishable inventory systems," Operations Research Perspectives, Elsevier, vol. 9(C).
    10. Liu, Zhenyuan & Han, Shuihua & Li, Chao & Gupta, Shivam & Sivarajah, Uthayasankar, 2022. "Leveraging customer engagement to improve the operational efficiency of social commerce start-ups," Journal of Business Research, Elsevier, vol. 140(C), pages 572-582.
    11. Rostami-Tabar, Bahman & Disney, Stephen M., 2023. "On the order-up-to policy with intermittent integer demand and logically consistent forecasts," International Journal of Production Economics, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Altay, Nezih & Litteral, Lewis A. & Rudisill, Frank, 2012. "Effects of correlation on intermittent demand forecasting and stock control," International Journal of Production Economics, Elsevier, vol. 135(1), pages 275-283.
    2. Pennings, Clint L.P. & van Dalen, Jan & van der Laan, Erwin A., 2017. "Exploiting elapsed time for managing intermittent demand for spare parts," European Journal of Operational Research, Elsevier, vol. 258(3), pages 958-969.
    3. Hasni, M. & Aguir, M.S. & Babai, M.Z. & Jemai, Z., 2019. "On the performance of adjusted bootstrapping methods for intermittent demand forecasting," International Journal of Production Economics, Elsevier, vol. 216(C), pages 145-153.
    4. Boylan, John E. & Babai, M. Zied, 2016. "On the performance of overlapping and non-overlapping temporal demand aggregation approaches," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 136-144.
    5. K Nikolopoulos & A A Syntetos & J E Boylan & F Petropoulos & V Assimakopoulos, 2011. "An aggregate–disaggregate intermittent demand approach (ADIDA) to forecasting: an empirical proposition and analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 544-554, March.
    6. Prak, Derk & Teunter, Rudolf & Babai, M. Z. & Syntetos, A. A. & Boylan, D, 2018. "Forecasting and Inventory Control with Compound Poisson Demand Using Periodic Demand Data," Research Report 2018010, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    7. Kouki, Chaaben & Babai, M. Zied & Jemai, Zied & Minner, Stefan, 2019. "Solution procedures for lost sales base-stock inventory systems with compound Poisson demand," International Journal of Production Economics, Elsevier, vol. 209(C), pages 172-182.
    8. Syntetos, Aris A. & Zied Babai, M. & Gardner, Everette S., 2015. "Forecasting intermittent inventory demands: simple parametric methods vs. bootstrapping," Journal of Business Research, Elsevier, vol. 68(8), pages 1746-1752.
    9. Teunter, Ruud H. & Syntetos, Aris A. & Zied Babai, M., 2011. "Intermittent demand: Linking forecasting to inventory obsolescence," European Journal of Operational Research, Elsevier, vol. 214(3), pages 606-615, November.
    10. Pierre Dodin & Jingyi Xiao & Yossiri Adulyasak & Neda Etebari Alamdari & Lea Gauthier & Philippe Grangier & Paul Lemaitre & William L. Hamilton, 2023. "Bombardier Aftermarket Demand Forecast with Machine Learning," Interfaces, INFORMS, vol. 53(6), pages 425-445, November.
    11. Nenes, George & Panagiotidou, Sofia & Tagaras, George, 2010. "Inventory management of multiple items with irregular demand: A case study," European Journal of Operational Research, Elsevier, vol. 205(2), pages 313-324, September.
    12. Lengu, D. & Syntetos, A.A. & Babai, M.Z., 2014. "Spare parts management: Linking distributional assumptions to demand classification," European Journal of Operational Research, Elsevier, vol. 235(3), pages 624-635.
    13. Zhu, Sha & Dekker, Rommert & van Jaarsveld, Willem & Renjie, Rex Wang & Koning, Alex J., 2017. "An improved method for forecasting spare parts demand using extreme value theory," European Journal of Operational Research, Elsevier, vol. 261(1), pages 169-181.
    14. Prak, Dennis & Rogetzer, Patricia, 2022. "Timing intermittent demand with time-varying order-up-to levels," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1126-1136.
    15. Zied Babai, M. & Syntetos, Aris A. & Teunter, Ruud, 2010. "On the empirical performance of (T, s, S) heuristics," European Journal of Operational Research, Elsevier, vol. 202(2), pages 466-472, April.
    16. Kourentzes, Nikolaos, 2013. "Intermittent demand forecasts with neural networks," International Journal of Production Economics, Elsevier, vol. 143(1), pages 198-206.
    17. Turrini, Laura & Meissner, Joern, 2019. "Spare parts inventory management: New evidence from distribution fitting," European Journal of Operational Research, Elsevier, vol. 273(1), pages 118-130.
    18. Jie Chen & Peter L. Jackson & John A. Muckstadt, 2011. "TECHNICAL NOTE---Exact Analysis of a Lost Sales Model Under Stuttering Poisson Demand," Operations Research, INFORMS, vol. 59(1), pages 249-253, February.
    19. Kamal Sanguri & Kampan Mukherjee, 2021. "Forecasting of intermittent demands under the risk of inventory obsolescence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1054-1069, September.
    20. Altay, Nezih & Rudisill, Frank & Litteral, Lewis A., 2008. "Adapting Wright's modification of Holt's method to forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 111(2), pages 389-408, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:210:y:2011:i:3:p:552-558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.