IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v198y2009i1p47-56.html
   My bibliography  Save this article

Implementing an efficient fptas for the 0-1 multi-objective knapsack problem

Author

Listed:
  • Bazgan, Cristina
  • Hugot, Hadrien
  • Vanderpooten, Daniel

Abstract

In the present work, we are interested in the practical behavior of a new fully polynomial time approximation schemes (fptas) to solve the approximation version of the 0-1 multi-objective knapsack problem. The proposed methodology makes use of very general techniques (such as dominance relations in dynamic programming) and thus may be applicable in the implementation of fptas for other problems as well. Extensive numerical experiments on various types of instances in the bi and tri-objective cases establish that our method performs very well both in terms of CPU time and size of solved instances. We point out some reasons for the good practical performance of our algorithm. A comparison with an exact method and the fptas proposed in [Erlebach, T., Kellerer, H., Pferschy, U., 2002. Approximating multiobjective knapsack problems. Management Science 48 (12), 1603-1612] is also performed.

Suggested Citation

  • Bazgan, Cristina & Hugot, Hadrien & Vanderpooten, Daniel, 2009. "Implementing an efficient fptas for the 0-1 multi-objective knapsack problem," European Journal of Operational Research, Elsevier, vol. 198(1), pages 47-56, October.
  • Handle: RePEc:eee:ejores:v:198:y:2009:i:1:p:47-56
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00690-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Erlebach & Hans Kellerer & Ulrich Pferschy, 2002. "Approximating Multiobjective Knapsack Problems," Management Science, INFORMS, vol. 48(12), pages 1603-1612, December.
    2. Safer, Hershel M. & Orlin, James B., 1953-, 1995. "Fast approximation schemes for multi-criteria combinatorial optimization," Working papers 3756-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    3. Arthur Warburton, 1987. "Approximation of Pareto Optima in Multiple-Objective, Shortest-Path Problems," Operations Research, INFORMS, vol. 35(1), pages 70-79, February.
    4. G. L. Nemhauser & Z. Ullmann, 1969. "Discrete Dynamic Programming and Capital Allocation," Management Science, INFORMS, vol. 15(9), pages 494-505, May.
    5. Safer, Hershel M. & Orlin, James B., 1953-, 1995. "Fast approximation schemes for multi-criteria flow, knapsack, and scheduling problems," Working papers 3757-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rong, Aiying & Figueira, José Rui, 2013. "A reduction dynamic programming algorithm for the bi-objective integer knapsack problem," European Journal of Operational Research, Elsevier, vol. 231(2), pages 299-313.
    2. Rong, Aiying & Figueira, José Rui, 2014. "Dynamic programming algorithms for the bi-objective integer knapsack problem," European Journal of Operational Research, Elsevier, vol. 236(1), pages 85-99.
    3. Bazgan, Cristina & Jamain, Florian & Vanderpooten, Daniel, 2017. "Discrete representation of the non-dominated set for multi-objective optimization problems using kernels," European Journal of Operational Research, Elsevier, vol. 260(3), pages 814-827.
    4. Florios, Kostas & Mavrotas, George & Diakoulaki, Danae, 2010. "Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 203(1), pages 14-21, May.
    5. Justkowiak, Jan-Erik & Kovalev, Sergey & Kovalyov, Mikhail Y. & Pesch, Erwin, 2023. "Single machine scheduling with assignable due dates to minimize maximum and total late work," European Journal of Operational Research, Elsevier, vol. 308(1), pages 76-83.
    6. Daniel Vanderpooten & Lakmali Weerasena & Margaret M. Wiecek, 2017. "Covers and approximations in multiobjective optimization," Journal of Global Optimization, Springer, vol. 67(3), pages 601-619, March.
    7. Bas, Esra, 2011. "An investment plan for preventing child injuries using risk priority number of failure mode and effects analysis methodology and a multi-objective, multi-dimensional mixed 0-1 knapsack model," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 748-756.
    8. Shah, Ruchit & Reed, Patrick, 2011. "Comparative analysis of multiobjective evolutionary algorithms for random and correlated instances of multiobjective d-dimensional knapsack problems," European Journal of Operational Research, Elsevier, vol. 211(3), pages 466-479, June.
    9. José Figueira & Luís Paquete & Marco Simões & Daniel Vanderpooten, 2013. "Algorithmic improvements on dynamic programming for the bi-objective {0,1} knapsack problem," Computational Optimization and Applications, Springer, vol. 56(1), pages 97-111, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nir Halman & Mikhail Y. Kovalyov & Alain Quilliot & Dvir Shabtay & Moshe Zofi, 2019. "Bi-criteria path problem with minimum length and maximum survival probability," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 469-489, June.
    2. Aissi, Hassene & Bazgan, Cristina & Vanderpooten, Daniel, 2007. "Approximation of min-max and min-max regret versions of some combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 179(2), pages 281-290, June.
    3. Arne Herzel & Stefan Ruzika & Clemens Thielen, 2021. "Approximation Methods for Multiobjective Optimization Problems: A Survey," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1284-1299, October.
    4. Fritz Bökler & Markus Chimani & Mirko H. Wagner, 2022. "On the rectangular knapsack problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 149-160, August.
    5. Laumanns, Marco & Zenklusen, Rico, 2011. "Stochastic convergence of random search methods to fixed size Pareto front approximations," European Journal of Operational Research, Elsevier, vol. 213(2), pages 414-421, September.
    6. Jamain, Florian, 2014. "Représentations discrètes de l'ensemble des points non dominés pour des problèmes d'optimisation multi-objectifs," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14002 edited by Bazgan, Cristina.
    7. José Figueira & Luís Paquete & Marco Simões & Daniel Vanderpooten, 2013. "Algorithmic improvements on dynamic programming for the bi-objective {0,1} knapsack problem," Computational Optimization and Applications, Springer, vol. 56(1), pages 97-111, September.
    8. Daniel Vanderpooten & Lakmali Weerasena & Margaret M. Wiecek, 2017. "Covers and approximations in multiobjective optimization," Journal of Global Optimization, Springer, vol. 67(3), pages 601-619, March.
    9. Lakmali Weerasena, 2022. "Advancing local search approximations for multiobjective combinatorial optimization problems," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 589-612, April.
    10. Aissi, Hassene & Bazgan, Cristina & Vanderpooten, Daniel, 2009. "Min-max and min-max regret versions of combinatorial optimization problems: A survey," European Journal of Operational Research, Elsevier, vol. 197(2), pages 427-438, September.
    11. Li, Jianping & Ge, Yu & He, Shuai & Lichen, Junran, 2014. "Approximation algorithms for constructing some required structures in digraphs," European Journal of Operational Research, Elsevier, vol. 232(2), pages 307-314.
    12. Büsing, Christina & Goetzmann, Kai-Simon & Matuschke, Jannik & Stiller, Sebastian, 2017. "Reference points and approximation algorithms in multicriteria discrete optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 829-840.
    13. Fujimoto, Masako & Yamada, Takeo, 2006. "An exact algorithm for the knapsack sharing problem with common items," European Journal of Operational Research, Elsevier, vol. 171(2), pages 693-707, June.
    14. George Kozanidis, 2009. "Solving the linear multiple choice knapsack problem with two objectives: profit and equity," Computational Optimization and Applications, Springer, vol. 43(2), pages 261-294, June.
    15. Li Guan & Jianping Li & Weidong Li & Junran Lichen, 2019. "Improved approximation algorithms for the combination problem of parallel machine scheduling and path," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 689-697, October.
    16. Altannar Chinchuluun & Panos Pardalos, 2007. "A survey of recent developments in multiobjective optimization," Annals of Operations Research, Springer, vol. 154(1), pages 29-50, October.
    17. Christian Meier & Dennis Kundisch & Jochen Willeke, 2017. "Is it Worth the Effort?," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(2), pages 81-95, April.
    18. Luis Paquete & Tommaso Schiavinotto & Thomas Stützle, 2007. "On local optima in multiobjective combinatorial optimization problems," Annals of Operations Research, Springer, vol. 156(1), pages 83-97, December.
    19. Murthy, Ishwar & Sarkar, Sumit, 1997. "Exact algorithms for the stochastic shortest path problem with a decreasing deadline utility function," European Journal of Operational Research, Elsevier, vol. 103(1), pages 209-229, November.
    20. Alexandre D. Jesus & Luís Paquete & Arnaud Liefooghe, 2021. "A model of anytime algorithm performance for bi-objective optimization," Journal of Global Optimization, Springer, vol. 79(2), pages 329-350, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:198:y:2009:i:1:p:47-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.