IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v198y2009i1p275-286.html
   My bibliography  Save this article

Mathematical justification of a heuristic for statistical correlation of real-life time series

Author

Listed:
  • Agafonov, Evgeny
  • Bargiela, Andrzej
  • Burke, Edmund
  • Peytchev, Evtim

Abstract

Many of the analyses of time series that arise in real-life situations require the adoption of various simplifying assumptions so as to cope with the complexity of the phenomena under consideration. Whilst accepting that these simplifications lead to heuristics providing less accurate processing of information compared to the solution of analytical equations, the intelligent choice of the simplifications coupled with the empirical verification of the resulting heuristic has proven itself to be a powerful systems modelling paradigm. In this study, we look at the theoretical underpinning of a successful heuristic for estimation of urban travel times from lane occupancy measurements. We show that by interpreting time series as statistical processes with a known distribution it is possible to estimate travel time as a limit value of an appropriately defined statistical process. The proof of the theorem asserting the above, supports the conclusion that it is possible to design a heuristic that eliminates the adverse effect of spurious readings without loosing temporal resolution of data (as implied by the standard method of data averaging). The original contribution of the paper concerning the link between the analytical modelling and the design of heuristics is general and relevant to a broad spectrum of applications.

Suggested Citation

  • Agafonov, Evgeny & Bargiela, Andrzej & Burke, Edmund & Peytchev, Evtim, 2009. "Mathematical justification of a heuristic for statistical correlation of real-life time series," European Journal of Operational Research, Elsevier, vol. 198(1), pages 275-286, October.
  • Handle: RePEc:eee:ejores:v:198:y:2009:i:1:p:275-286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00503-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burke, E.K. & Landa Silva, J.D., 2006. "The influence of the fitness evaluation method on the performance of multiobjective search algorithms," European Journal of Operational Research, Elsevier, vol. 169(3), pages 875-897, March.
    2. Coifman, Benjamin, 2001. "Improved velocity estimation using single loop detectors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(10), pages 863-880, December.
    3. Dailey, D. J., 1993. "Travel-time estimation using cross-correlation techniques," Transportation Research Part B: Methodological, Elsevier, vol. 27(2), pages 97-107, April.
    4. Petty, Karl F. & Bickel, Peter & Ostland, Michael & Rice, John & Schoenberg, Frederic & Jiang, Jiming & Ritov, Ya'acov, 1998. "Accurate estimation of travel times from single-loop detectors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(1), pages 1-17, January.
    5. E. K. Burke & G. Kendall & G. Whitwell, 2004. "A New Placement Heuristic for the Orthogonal Stock-Cutting Problem," Operations Research, INFORMS, vol. 52(4), pages 655-671, August.
    6. Andrzej Bargiela & Iisakki Kosonen & Matti Pursula & Evtim Peytchev, 2006. "Granular Analysis of Traffic Data for Turning Movements Estimation," International Journal of Enterprise Information Systems (IJEIS), IGI Global, vol. 2(2), pages 13-27, April.
    7. Dailey, D. J., 1999. "A statistical algorithm for estimating speed from single loop volume and occupancy measurements," Transportation Research Part B: Methodological, Elsevier, vol. 33(5), pages 313-322, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meisel, Stephan & Mattfeld, Dirk, 2010. "Synergies of Operations Research and Data Mining," European Journal of Operational Research, Elsevier, vol. 206(1), pages 1-10, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Lu & Yang, Jun & Mahmassani, Hani, 2008. "Travel time estimation based on piecewise truncated quadratic speed trajectory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(1), pages 173-186, January.
    2. Soriguera, F. & Rosas, D. & Robusté, F., 2010. "Travel time measurement in closed toll highways," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1242-1267, December.
    3. Guo, Jianhua & Kong, Ye & Li, Zongzhi & Huang, Wei & Cao, Jinde & Wei, Yun, 2019. "A model and genetic algorithm for area-wide intersection signal optimization under user equilibrium traffic," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 92-104.
    4. Coifman, Benjamin & Varaiya, Pravin, 2002. "Deployment and Evaluation of Real-Time Vehicle Reidentification from an Operations Perspective," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6tp5w2gt, Institute of Transportation Studies, UC Berkeley.
    5. Coifman, Benjamin, 2004. "Distributed Surveillance and Control on Freeways," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2wx1d9ck, Institute of Transportation Studies, UC Berkeley.
    6. Xu, Guanhao & Gayah, Vikash V., 2023. "Non-unimodal and non-concave relationships in the network Macroscopic Fundamental Diagram caused by hierarchical streets," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 203-227.
    7. Coifman, Benjamin A. & Mallika, Ramachandran, 2007. "Distributed surveillance on freeways emphasizing incident detection and verification," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(8), pages 750-767, October.
    8. Marco Antonio Boschetti & Lorenza Montaletti, 2010. "An Exact Algorithm for the Two-Dimensional Strip-Packing Problem," Operations Research, INFORMS, vol. 58(6), pages 1774-1791, December.
    9. Hounsell, Nick B. & Ishtiaq, Saeed, 1997. "Journey time forecasting for dynamic route guidance systems in incident conditions," International Journal of Forecasting, Elsevier, vol. 13(1), pages 33-42, March.
    10. Oscar Dominguez & Angel A. Juan & Barry Barrios & Javier Faulin & Alba Agustin, 2016. "Using biased randomization for solving the two-dimensional loading vehicle routing problem with heterogeneous fleet," Annals of Operations Research, Springer, vol. 236(2), pages 383-404, January.
    11. Pedro Cesar Lopes Gerum & Andrew Reed Benton & Melike Baykal-Gürsoy, 2019. "Traffic density on corridors subject to incidents: models for long-term congestion management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 795-831, December.
    12. Li, Baibing, 2009. "On the recursive estimation of vehicular speed using data from a single inductance loop detector: A Bayesian approach," Transportation Research Part B: Methodological, Elsevier, vol. 43(4), pages 391-402, May.
    13. Reinaldo Morabito & Vitória Pureza, 2010. "A heuristic approach based on dynamic programming and and/or-graph search for the constrained two-dimensional guillotine cutting problem," Annals of Operations Research, Springer, vol. 179(1), pages 297-315, September.
    14. Kaiyuan Liu & Hongyu Zhang & Chong Wang & Hui Li & Yongquan Chen & Qiong Chen, 2023. "Robust Optimization for the Two-Dimensional Strip-Packing Problem with Variable-Sized Bins," Mathematics, MDPI, vol. 11(23), pages 1-22, November.
    15. Coifman, Benjamin, 1999. "Improved Data Measurement Using Existing Loop Detectors," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8m6899gm, Institute of Transportation Studies, UC Berkeley.
    16. Bentao Su & Naiming Xie, 2020. "Single workgroup scheduling problem with variable processing personnel," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(2), pages 671-684, June.
    17. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    18. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    19. Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.
    20. Kockelman, Kara M. & Ma, Jianming, 2007. "Freeway Speeds and Speed Variations Preceding Crashes, Within and Across Lanes," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 46(1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:198:y:2009:i:1:p:275-286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.