IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v192y2009i2p700-705.html
   My bibliography  Save this article

An exact algorithm for the fixed-charge multiple knapsack problem

Author

Listed:
  • Yamada, Takeo
  • Takeoka, Takahiro

Abstract

We formulate the fixed-charge multiple knapsack problem (FCMKP) as an extension of the multiple knapsack problem (MKP). The Lagrangian relaxation problem is easily solved, and together with a greedy heuristic we obtain a pair of upper and lower bounds quickly. We make use of these bounds in the pegging test to reduce the problem size. We also present a branch-and-bound (B&B) algorithm to solve FCMKP to optimality. This algorithm exploits the Lagrangian upper bound as well as the pegging result for pruning, and at each terminal subproblem solve MKP exactly by invoking MULKNAP code developed by Pisinger [Pisinger, D., 1999. An exact algorithm for large multiple knapsack problems. European Journal of Operational Research 114, 528-541]. As a result, we are able to solve almost all test problems with up to 32,000 items and 50 knapsacks within a few seconds on an ordinary computing environment, although the algorithm remains some weakness for small instances with relatively many knapsacks.

Suggested Citation

  • Yamada, Takeo & Takeoka, Takahiro, 2009. "An exact algorithm for the fixed-charge multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 192(2), pages 700-705, January.
  • Handle: RePEc:eee:ejores:v:192:y:2009:i:2:p:700-705
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)01036-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marshall L. Fisher, 1981. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 27(1), pages 1-18, January.
    2. Pisinger, David, 1999. "An exact algorithm for large multiple knapsack problems," European Journal of Operational Research, Elsevier, vol. 114(3), pages 528-541, May.
    3. Pisinger, David, 1995. "An expanding-core algorithm for the exact 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 87(1), pages 175-187, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diaz, Juan Esteban & Handl, Julia & Xu, Dong-Ling, 2018. "Integrating meta-heuristics, simulation and exact techniques for production planning of a failure-prone manufacturing system," European Journal of Operational Research, Elsevier, vol. 266(3), pages 976-989.
    2. Kataoka, Seiji & Yamada, Takeo, 2014. "Upper and lower bounding procedures for the multiple knapsack assignment problem," European Journal of Operational Research, Elsevier, vol. 237(2), pages 440-447.
    3. Martello, Silvano & Monaci, Michele, 2020. "Algorithmic approaches to the multiple knapsack assignment problem," Omega, Elsevier, vol. 90(C).
    4. Alejandro Crema, 2018. "Generalized average shadow prices and bottlenecks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(1), pages 99-124, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kataoka, Seiji & Yamada, Takeo, 2014. "Upper and lower bounding procedures for the multiple knapsack assignment problem," European Journal of Operational Research, Elsevier, vol. 237(2), pages 440-447.
    2. Torbjörn Larsson & Michael Patriksson, 2006. "Global Optimality Conditions for Discrete and Nonconvex Optimization---With Applications to Lagrangian Heuristics and Column Generation," Operations Research, INFORMS, vol. 54(3), pages 436-453, June.
    3. Pisinger, David, 1995. "A minimal algorithm for the multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 83(2), pages 394-410, June.
    4. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    5. Martello, Silvano & Pisinger, David & Toth, Paolo, 2000. "New trends in exact algorithms for the 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 325-332, June.
    6. M Diaby & A L Nsakanda, 2006. "Large-scale capacitated part-routing in the presence of process and routing flexibilities and setup costs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1100-1112, September.
    7. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    8. Mutsunori Yagiura & Toshihide Ibaraki & Fred Glover, 2004. "An Ejection Chain Approach for the Generalized Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 133-151, May.
    9. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    10. Shangyao Yan & Chun-Ying Chen & Chuan-Che Wu, 2012. "Solution methods for the taxi pooling problem," Transportation, Springer, vol. 39(3), pages 723-748, May.
    11. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    12. Keliang Wang & Leonardo Lozano & Carlos Cardonha & David Bergman, 2023. "Optimizing over an Ensemble of Trained Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 652-674, May.
    13. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    14. Tomohiko Mizutani & Makoto Yamashita, 2013. "Correlative sparsity structures and semidefinite relaxations for concave cost transportation problems with change of variables," Journal of Global Optimization, Springer, vol. 56(3), pages 1073-1100, July.
    15. Alexandre Belloni & Mitchell J. Lovett & William Boulding & Richard Staelin, 2012. "Optimal Admission and Scholarship Decisions: Choosing Customized Marketing Offers to Attract a Desirable Mix of Customers," Marketing Science, INFORMS, vol. 31(4), pages 621-636, July.
    16. Arabatzis, Garyfallos & Petridis, Konstantinos & Galatsidas, Spyros & Ioannou, Konstantinos, 2013. "A demand scenario based fuelwood supply chain: A conceptual model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 687-697.
    17. Mazzola, Joseph B. & Neebe, Alan W., 1999. "Lagrangian-relaxation-based solution procedures for a multiproduct capacitated facility location problem with choice of facility type," European Journal of Operational Research, Elsevier, vol. 115(2), pages 285-299, June.
    18. Kroon, Leo G. & Salomon, Marc & Van Wassenhove, Luk N., 1995. "Exact and approximation algorithms for the operational fixed interval scheduling problem," European Journal of Operational Research, Elsevier, vol. 82(1), pages 190-205, April.
    19. Imai, Akio & Nishimura, Etsuko & Current, John, 2007. "A Lagrangian relaxation-based heuristic for the vehicle routing with full container load," European Journal of Operational Research, Elsevier, vol. 176(1), pages 87-105, January.
    20. Martinhon, Carlos & Lucena, Abilio & Maculan, Nelson, 2004. "Stronger K-tree relaxations for the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 158(1), pages 56-71, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:192:y:2009:i:2:p:700-705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.