IDEAS home Printed from
   My bibliography  Save this article

On the complexity of optimization over the standard simplex


  • de Klerk, E.
  • den Hertog, D.
  • Elabwabi, G.


We review complexity results for minimizing polynomials over the standard simplex and unit hypercube. In addition, we derive new results on the computational complexity of approximating the minimum of some classes of functions (including Lipschitz continuous functions) on the standard simplex. The main tools used in the analysis are Bernstein approximation and Lagrange interpolation on the simplex combined with an earlier result by de Klerk et al. [A PTAS for the minimization of polynomials of fixed degree over the simplex, Theoretical Computer Science 361 (2-3) (2006) 210-225].

Suggested Citation

  • de Klerk, E. & den Hertog, D. & Elabwabi, G., 2008. "On the complexity of optimization over the standard simplex," European Journal of Operational Research, Elsevier, vol. 191(3), pages 773-785, December.
  • Handle: RePEc:eee:ejores:v:191:y:2008:i:3:p:773-785

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. A.M. Bagirov & A.M. Rubinov, 2000. "Global Minimization of Increasing Positively Homogeneous Functions over the Unit Simplex," Annals of Operations Research, Springer, vol. 98(1), pages 171-187, December.
    2. de Klerk, E. & Laurent, M. & Parrilo, P., 2006. "A PTAS for the minimization of polynomials of fixed degree over the simplex," Other publications TiSEM 603897c9-179e-43e4-9e83-6, Tilburg University, School of Economics and Management.
    3. Bertsimas, Dimitris & Lauprete, Geoffrey J. & Samarov, Alexander, 2004. "Shortfall as a risk measure: properties, optimization and applications," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1353-1381, April.
    4. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    5. de Klerk, E. & Elfadul, G.E.E. & den Hertog, D., 2006. "Optimization of Univariate Functions on Bounded Intervals by Interpolation and Semidefinite Programming," Discussion Paper 2006-26, Tilburg University, Center for Economic Research.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Immanuel Bomze & Stefan Gollowitzer & E. Yıldırım, 2014. "Rounding on the standard simplex: regular grids for global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 243-258, July.
    2. repec:eee:apmaco:v:315:y:2017:i:c:p:246-258 is not listed on IDEAS

    More about this item

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:191:y:2008:i:3:p:773-785. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.