IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v59y2014i2p243-258.html
   My bibliography  Save this article

Rounding on the standard simplex: regular grids for global optimization

Author

Listed:
  • Immanuel Bomze
  • Stefan Gollowitzer
  • E. Yıldırım

Abstract

Given a point on the standard simplex, we calculate a proximal point on the regular grid which is closest with respect to any norm in a large class, including all $$\ell ^p$$ ℓ p -norms for $$p\ge 1$$ p ≥ 1 . We show that the minimal $$\ell ^p$$ ℓ p -distance to the regular grid on the standard simplex can exceed one, even for very fine mesh sizes in high dimensions. Furthermore, for $$p=1$$ p = 1 , the maximum minimal distance approaches the $$\ell ^1$$ ℓ 1 -diameter of the standard simplex. We also put our results into perspective with respect to the literature on approximating global optimization problems over the standard simplex by means of the regular grid. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Immanuel Bomze & Stefan Gollowitzer & E. Yıldırım, 2014. "Rounding on the standard simplex: regular grids for global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 243-258, July.
  • Handle: RePEc:spr:jglopt:v:59:y:2014:i:2:p:243-258
    DOI: 10.1007/s10898-013-0126-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-013-0126-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-013-0126-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Klerk, E. & den Hertog, D. & Elabwabi, G., 2008. "On the complexity of optimization over the standard simplex," European Journal of Operational Research, Elsevier, vol. 191(3), pages 773-785, December.
    2. de Klerk, E., 2006. "The Complexity of Optimizing over a Simplex, Hypercube or Sphere : A Short Survey," Discussion Paper 2006-85, Tilburg University, Center for Economic Research.
    3. de Klerk, E. & Laurent, M. & Parrilo, P., 2006. "A PTAS for the minimization of polynomials of fixed degree over the simplex," Other publications TiSEM 603897c9-179e-43e4-9e83-6, Tilburg University, School of Economics and Management.
    4. Etienne Klerk, 2008. "The complexity of optimizing over a simplex, hypercube or sphere: a short survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(2), pages 111-125, June.
    5. L. Casado & I. García & B. Tóth & E. Hendrix, 2011. "On determining the cover of a simplex by spheres centered at its vertices," Journal of Global Optimization, Springer, vol. 50(4), pages 645-655, August.
    6. de Klerk, E., 2008. "The complexity of optimizing over a simplex, hypercube or sphere : A short survey," Other publications TiSEM 485b6860-cf1d-4cad-97b8-2, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Locatelli, 2013. "Approximation algorithm for a class of global optimization problems," Journal of Global Optimization, Springer, vol. 55(1), pages 13-25, January.
    2. de Klerk, E. & Laurent, M., 2010. "Error bounds for some semidefinite programming approaches to polynomial minimization on the hypercube," Other publications TiSEM 619d9658-77df-4b5e-9868-0, Tilburg University, School of Economics and Management.
    3. Maziar Salahi, 2010. "Convex optimization approach to a single quadratically constrained quadratic minimization problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(2), pages 181-187, June.
    4. Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2020. "An active-set algorithmic framework for non-convex optimization problems over the simplex," Computational Optimization and Applications, Springer, vol. 77(1), pages 57-89, September.
    5. de Klerk, Etienne & Laurent, Monique, 2019. "A survey of semidefinite programming approaches to the generalized problem of moments and their error analysis," Other publications TiSEM d956492f-3e25-4dda-a5e2-e, Tilburg University, School of Economics and Management.
    6. Peter Dickinson & Luuk Gijben, 2014. "On the computational complexity of membership problems for the completely positive cone and its dual," Computational Optimization and Applications, Springer, vol. 57(2), pages 403-415, March.
    7. W. Ackooij & A. Frangioni & W. Oliveira, 2016. "Inexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite support," Computational Optimization and Applications, Springer, vol. 65(3), pages 637-669, December.
    8. Bomze, Immanuel M., 2012. "Copositive optimization – Recent developments and applications," European Journal of Operational Research, Elsevier, vol. 216(3), pages 509-520.
    9. Immanuel Bomze & Werner Schachinger & Gabriele Uchida, 2012. "Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 423-445, March.
    10. Immanuel M. Bomze & Werner Schachinger & Reinhard Ullrich, 2018. "The Complexity of Simple Models—A Study of Worst and Typical Hard Cases for the Standard Quadratic Optimization Problem," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 651-674, May.
    11. Lek-Heng Lim, 2017. "Self-concordance is NP-hard," Journal of Global Optimization, Springer, vol. 68(2), pages 357-366, June.
    12. M. Locatelli, 2009. "Complexity Results for Some Global Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 93-102, January.
    13. Boglárka G.-Tóth & Eligius M. T. Hendrix & Leocadio G. Casado & Frédéric Messine, 2024. "On Dealing with Minima at the Border of a Simplicial Feasible Area in Simplicial Branch and Bound," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1880-1909, November.
    14. James Chok & Geoffrey M. Vasil, 2023. "Convex optimization over a probability simplex," Papers 2305.09046, arXiv.org.
    15. Tareq Hamadneh & Hassan Al-Zoubi & Saleh Ali Alomari, 2020. "Fast Computation of Polynomial Data Points Over Simplicial Face Values," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-13, March.
    16. Burgdorf, S. & Laurent, Monique & Piovesan, Teresa, 2017. "On the closure of the completely positive semidefinite cone and linear approximations to quantum colorings," Other publications TiSEM fabb1d61-6395-4123-9174-b, Tilburg University, School of Economics and Management.
    17. Muhammad Faisal Iqbal & Faizan Ahmed, 2022. "Approximation Hierarchies for the Copositive Tensor Cone and Their Application to the Polynomial Optimization over the Simplex," Mathematics, MDPI, vol. 10(10), pages 1-17, May.
    18. de Klerk, E. & den Hertog, D. & Elabwabi, G., 2008. "On the complexity of optimization over the standard simplex," European Journal of Operational Research, Elsevier, vol. 191(3), pages 773-785, December.
    19. Balázs Bánhelyi & Endre Palatinus & Balázs Lévai, 2015. "Optimal circle covering problems and their applications," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(4), pages 815-832, December.
    20. Monique Laurent & Zhao Sun, 2014. "Handelman’s hierarchy for the maximum stable set problem," Journal of Global Optimization, Springer, vol. 60(3), pages 393-423, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:59:y:2014:i:2:p:243-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.