IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v203y2024i2d10.1007_s10957-024-02480-9.html
   My bibliography  Save this article

On Dealing with Minima at the Border of a Simplicial Feasible Area in Simplicial Branch and Bound

Author

Listed:
  • Boglárka G.-Tóth

    (University of Szeged)

  • Eligius M. T. Hendrix

    (Universidad de Málaga
    Wageningen University)

  • Leocadio G. Casado

    (University of Almería, CeiA3)

  • Frédéric Messine

    (University of Toulouse)

Abstract

We consider a simplicial branch and bound Global Optimization algorithm, where the search region is a simplex. Apart from using longest edge bisection, a simplicial partition set can be reduced due to monotonicity of the objective function. If there is a direction in which the objective function is monotone over a simplex, depending on whether the facets that may contain the minimum are at the border of the search region, we can remove the simplex completely, or reduce it to some of its border facets. Our research question deals with finding monotone directions and labeling facets of a simplex as border after longest edge bisection and reduction due to monotonicity. Experimental results are shown over a set of global optimization problems where the feasible set is defined as a simplex, and a global minimum point is located at a face of the simplicial feasible area.

Suggested Citation

  • Boglárka G.-Tóth & Eligius M. T. Hendrix & Leocadio G. Casado & Frédéric Messine, 2024. "On Dealing with Minima at the Border of a Simplicial Feasible Area in Simplicial Branch and Bound," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1880-1909, November.
  • Handle: RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-024-02480-9
    DOI: 10.1007/s10957-024-02480-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02480-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02480-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Klerk, E., 2008. "The complexity of optimizing over a simplex, hypercube or sphere : A short survey," Other publications TiSEM 485b6860-cf1d-4cad-97b8-2, Tilburg University, School of Economics and Management.
    2. B. G.-Tóth & L. G. Casado & E. M. T. Hendrix & F. Messine, 2021. "On new methods to construct lower bounds in simplicial branch and bound based on interval arithmetic," Journal of Global Optimization, Springer, vol. 80(4), pages 779-804, August.
    3. Etienne Klerk, 2008. "The complexity of optimizing over a simplex, hypercube or sphere: a short survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(2), pages 111-125, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Immanuel Bomze & Werner Schachinger & Gabriele Uchida, 2012. "Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 423-445, March.
    2. Immanuel M. Bomze & Werner Schachinger & Reinhard Ullrich, 2018. "The Complexity of Simple Models—A Study of Worst and Typical Hard Cases for the Standard Quadratic Optimization Problem," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 651-674, May.
    3. Maziar Salahi, 2010. "Convex optimization approach to a single quadratically constrained quadratic minimization problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(2), pages 181-187, June.
    4. Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2020. "An active-set algorithmic framework for non-convex optimization problems over the simplex," Computational Optimization and Applications, Springer, vol. 77(1), pages 57-89, September.
    5. W. Ackooij & A. Frangioni & W. Oliveira, 2016. "Inexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite support," Computational Optimization and Applications, Springer, vol. 65(3), pages 637-669, December.
    6. de Klerk, E. & Laurent, M., 2010. "Error bounds for some semidefinite programming approaches to polynomial minimization on the hypercube," Other publications TiSEM 619d9658-77df-4b5e-9868-0, Tilburg University, School of Economics and Management.
    7. Bomze, Immanuel M., 2012. "Copositive optimization – Recent developments and applications," European Journal of Operational Research, Elsevier, vol. 216(3), pages 509-520.
    8. Lek-Heng Lim, 2017. "Self-concordance is NP-hard," Journal of Global Optimization, Springer, vol. 68(2), pages 357-366, June.
    9. de Klerk, Etienne & Laurent, Monique, 2019. "A survey of semidefinite programming approaches to the generalized problem of moments and their error analysis," Other publications TiSEM d956492f-3e25-4dda-a5e2-e, Tilburg University, School of Economics and Management.
    10. Peter Dickinson & Luuk Gijben, 2014. "On the computational complexity of membership problems for the completely positive cone and its dual," Computational Optimization and Applications, Springer, vol. 57(2), pages 403-415, March.
    11. Immanuel Bomze & Stefan Gollowitzer & E. Yıldırım, 2014. "Rounding on the standard simplex: regular grids for global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 243-258, July.
    12. Marco Locatelli, 2013. "Approximation algorithm for a class of global optimization problems," Journal of Global Optimization, Springer, vol. 55(1), pages 13-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-024-02480-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.