IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v189y2008i3p1267-1283.html
   My bibliography  Save this article

Predictive-reactive scheduling on a single resource with uncertain future jobs

Author

Listed:
  • Yang, Bibo
  • Geunes, Joseph

Abstract

We consider a scheduling problem where the firm must compete with other firms to win future jobs. Uncertainty arises as a result of incomplete information about whether the firm will win future jobs at the time the firm must create a predictive (planned) schedule. In the predictive schedule, the firm must determine the amount of planned idle time for uncertain jobs and their positions in the schedule. When the planned idle time does not match the actual requirements, certain schedule disruptions occur. The firm seeks to minimize the sum of expected tardiness cost, schedule disruption cost, and wasted idle time cost. For the special case of a single uncertain job, we provide a simple algorithm for the optimal planned idle time and the best reactive method for schedule disruptions. For the case of multiple uncertain jobs, a heuristic dynamic programming approach is presented.

Suggested Citation

  • Yang, Bibo & Geunes, Joseph, 2008. "Predictive-reactive scheduling on a single resource with uncertain future jobs," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1267-1283, September.
  • Handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:1267-1283
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00598-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ari P. J. Vepsalainen & Thomas E. Morton, 1987. "Priority Rules for Job Shops with Weighted Tardiness Costs," Management Science, INFORMS, vol. 33(8), pages 1035-1047, August.
    2. Michael Pinedo, 1983. "Stochastic Scheduling with Release Dates and Due Dates," Operations Research, INFORMS, vol. 31(3), pages 559-572, June.
    3. Jian Yang & Gang Yu, 2002. "On the Robust Single Machine Scheduling Problem," Journal of Combinatorial Optimization, Springer, vol. 6(1), pages 17-33, March.
    4. H. A. J. Crauwels & C. N. Potts & L. N. Van Wassenhove, 1998. "Local Search Heuristics for the Single Machine Total Weighted Tardiness Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 10(3), pages 341-350, August.
    5. Richard K. Congram & Chris N. Potts & Steef L. van de Velde, 2002. "An Iterated Dynasearch Algorithm for the Single-Machine Total Weighted Tardiness Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 52-67, February.
    6. Sarin, Subhash C. & Erel, Erdal & Steiner, George, 1991. "Sequencing jobs on a single machine with a common due date and stochastic processing times," European Journal of Operational Research, Elsevier, vol. 51(2), pages 188-198, March.
    7. Elmaghraby, Salah E., 2001. "On the optimal release time of jobs with random processing times, with extensions to other criteria," International Journal of Production Economics, Elsevier, vol. 74(1-3), pages 103-113, December.
    8. Penz, B. & Rapine, C. & Trystram, D., 2001. "Sensitivity analysis of scheduling algorithms," European Journal of Operational Research, Elsevier, vol. 134(3), pages 606-615, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Altekin, F. Tevhide & Bukchin, Yossi, 2022. "A multi-objective optimization approach for exploring the cost and makespan trade-off in additive manufacturing," European Journal of Operational Research, Elsevier, vol. 301(1), pages 235-253.
    2. Duma, Davide & Aringhieri, Roberto, 2019. "The management of non-elective patients: shared vs. dedicated policies," Omega, Elsevier, vol. 83(C), pages 199-212.
    3. Bing Wang & Xingbao Han & Xianxia Zhang & Shaohua Zhang, 2015. "Predictive-reactive scheduling for single surgical suite subject to random emergency surgery," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 949-966, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valente, Jorge M.S., 2007. "Improving the performance of the ATC dispatch rule by using workload data to determine the lookahead parameter value," International Journal of Production Economics, Elsevier, vol. 106(2), pages 563-573, April.
    2. Haiyan Wang & Chung‐Yee Lee, 2005. "Production and transport logistics scheduling with two transport mode choices," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(8), pages 796-809, December.
    3. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    4. Bilge, Umit & Kurtulan, Mujde & Kirac, Furkan, 2007. "A tabu search algorithm for the single machine total weighted tardiness problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1423-1435, February.
    5. Akturk, M. Selim & Ozdemir, Deniz, 2001. "A new dominance rule to minimize total weighted tardiness with unequal release dates," European Journal of Operational Research, Elsevier, vol. 135(2), pages 394-412, December.
    6. S H Yoon & I S Lee, 2011. "New constructive heuristics for the total weighted tardiness problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 232-237, January.
    7. Jang, Wooseung, 2002. "Dynamic scheduling of stochastic jobs on a single machine," European Journal of Operational Research, Elsevier, vol. 138(3), pages 518-530, May.
    8. Louis-Philippe Bigras & Michel Gamache & Gilles Savard, 2008. "Time-Indexed Formulations and the Total Weighted Tardiness Problem," INFORMS Journal on Computing, INFORMS, vol. 20(1), pages 133-142, February.
    9. X. Cai & S. Zhou, 1997. "Scheduling stochastic jobs with asymmetric earliness and tardiness penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(6), pages 531-557, September.
    10. Ramesh Bollapragada & Norman M. Sadeh, 2004. "Proactive release procedures for just‐in‐time job shop environments, subject to machine failures," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(7), pages 1018-1044, October.
    11. O Holthaus & C Rajendran, 2005. "A fast ant-colony algorithm for single-machine scheduling to minimize the sum of weighted tardiness of jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 947-953, August.
    12. Soroush, H.M., 2007. "Minimizing the weighted number of early and tardy jobs in a stochastic single machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 181(1), pages 266-287, August.
    13. Xiaoqiang Cai & Sean Zhou, 1999. "Stochastic Scheduling on Parallel Machines Subject to Random Breakdowns to Minimize Expected Costs for Earliness and Tardy Jobs," Operations Research, INFORMS, vol. 47(3), pages 422-437, June.
    14. Andreas C. Nearchou, 2018. "Multicriteria scheduling optimization using an elitist multiobjective population heuristic: the h-NSDE algorithm," Journal of Heuristics, Springer, vol. 24(6), pages 817-851, December.
    15. Chang, Zhiqi & Ding, Jian-Ya & Song, Shiji, 2019. "Distributionally robust scheduling on parallel machines under moment uncertainty," European Journal of Operational Research, Elsevier, vol. 272(3), pages 832-846.
    16. Geiger, Martin Josef, 2010. "On heuristic search for the single machine total weighted tardiness problem - Some theoretical insights and their empirical verification," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1235-1243, December.
    17. Javad Rezaeian & Reza Alizadeh Foroutan & Toraj Mojibi & Yacob Khojasteh, 2023. "Sensitivity Analysis of the Unrelated Parallel Machine Scheduling Problem with Rework Processes and Machine Eligibility Restrictions," SN Operations Research Forum, Springer, vol. 4(3), pages 1-24, September.
    18. Helena Ramalhinho-Lourenço & Olivier C. Martin & Thomas Stützle, 2000. "Iterated local search," Economics Working Papers 513, Department of Economics and Business, Universitat Pompeu Fabra.
    19. Golenko-Ginzburg, Dimitri & Gonik, Aharon, 1997. "Using "look ahead" techniques in job-shop scheduling with random operations," International Journal of Production Economics, Elsevier, vol. 50(1), pages 13-22, May.
    20. Alidaee, Bahram & Kochenberger, Gary A. & Amini, Mohammad M., 2001. "Greedy solutions of selection and ordering problems," European Journal of Operational Research, Elsevier, vol. 134(1), pages 203-215, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:1267-1283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.