IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v162y2005i1p206-219.html
   My bibliography  Save this article

Local search for the probabilistic traveling salesman problem: Correction to the 2-p-opt and 1-shift algorithms

Author

Listed:
  • Bianchi, Leonora
  • Knowles, Joshua
  • Bowler, Neill

Abstract

No abstract is available for this item.

Suggested Citation

  • Bianchi, Leonora & Knowles, Joshua & Bowler, Neill, 2005. "Local search for the probabilistic traveling salesman problem: Correction to the 2-p-opt and 1-shift algorithms," European Journal of Operational Research, Elsevier, vol. 162(1), pages 206-219, April.
  • Handle: RePEc:eee:ejores:v:162:y:2005:i:1:p:206-219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(03)00745-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris J. Bertsimas & Patrick Jaillet & Amedeo R. Odoni, 1990. "A Priori Optimization," Operations Research, INFORMS, vol. 38(6), pages 1019-1033, December.
    2. Gilbert Laporte & François V. Louveaux & Hélène Mercure, 1994. "A Priori Optimization of the Probabilistic Traveling Salesman Problem," Operations Research, INFORMS, vol. 42(3), pages 543-549, June.
    3. Dimitris Bertsimas & Philippe Chervi & Michael Peterson, 1995. "Computational Approaches to Stochastic Vehicle Routing Problems," Transportation Science, INFORMS, vol. 29(4), pages 342-352, November.
    4. Bertsimas, Dimitris & Howell, Louis H., 1993. "Further results on the probabilistic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 65(1), pages 68-95, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yu-Hsin, 2008. "Diversified local search strategy under scatter search framework for the probabilistic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 191(2), pages 332-346, December.
    2. Prasanna Balaprakash & Mauro Birattari & Thomas Stützle & Marco Dorigo, 2015. "Estimation-based metaheuristics for the single vehicle routing problem with stochastic demands and customers," Computational Optimization and Applications, Springer, vol. 61(2), pages 463-487, June.
    3. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.
    4. N. Bourgeois & F. Della Croce & B. Escoffier & C. Murat & V. Th. Paschos, 2009. "Probabilistic graph-coloring in bipartite and split graphs," Journal of Combinatorial Optimization, Springer, vol. 17(3), pages 274-311, April.
    5. Balaprakash, Prasanna & Birattari, Mauro & Stützle, Thomas & Dorigo, Marco, 2009. "Adaptive sample size and importance sampling in estimation-based local search for the probabilistic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 199(1), pages 98-110, November.
    6. Si Chen & Bruce Golden & Richard Wong & Hongsheng Zhong, 2009. "Arc-Routing Models for Small-Package Local Routing," Transportation Science, INFORMS, vol. 43(1), pages 43-55, February.
    7. Allmendinger, Richard & Handl, Julia & Knowles, Joshua, 2015. "Multiobjective optimization: When objectives exhibit non-uniform latencies," European Journal of Operational Research, Elsevier, vol. 243(2), pages 497-513.
    8. Bianchi, Leonora & Campbell, Ann Melissa, 2007. "Extension of the 2-p-opt and 1-shift algorithms to the heterogeneous probabilistic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 176(1), pages 131-144, January.
    9. Mauro Birattari & Prasanna Balaprakash & Thomas Stützle & Marco Dorigo, 2008. "Estimation-Based Local Search for Stochastic Combinatorial Optimization Using Delta Evaluations: A Case Study on the Probabilistic Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 644-658, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.
    2. Liu, Yu-Hsin, 2008. "Diversified local search strategy under scatter search framework for the probabilistic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 191(2), pages 332-346, December.
    3. Wen-Huei Yang & Kamlesh Mathur & Ronald H. Ballou, 2000. "Stochastic Vehicle Routing Problem with Restocking," Transportation Science, INFORMS, vol. 34(1), pages 99-112, February.
    4. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2006. "Exploiting Knowledge About Future Demands for Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 40(2), pages 211-225, May.
    5. Bianchi, Leonora & Campbell, Ann Melissa, 2007. "Extension of the 2-p-opt and 1-shift algorithms to the heterogeneous probabilistic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 176(1), pages 131-144, January.
    6. Astrid S. Kenyon & David P. Morton, 2003. "Stochastic Vehicle Routing with Random Travel Times," Transportation Science, INFORMS, vol. 37(1), pages 69-82, February.
    7. Gendreau, Michel & Laporte, Gilbert & Seguin, Rene, 1996. "Stochastic vehicle routing," European Journal of Operational Research, Elsevier, vol. 88(1), pages 3-12, January.
    8. Si Chen & Bruce Golden & Richard Wong & Hongsheng Zhong, 2009. "Arc-Routing Models for Small-Package Local Routing," Transportation Science, INFORMS, vol. 43(1), pages 43-55, February.
    9. Majid Salavati-Khoshghalb & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A hybrid recourse policy for the vehicle routing problem with stochastic demands," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 269-298, September.
    10. Bertazzi, Luca & Secomandi, Nicola, 2018. "Faster rollout search for the vehicle routing problem with stochastic demands and restocking," European Journal of Operational Research, Elsevier, vol. 270(2), pages 487-497.
    11. Shahparvari, Shahrooz & Abbasi, Babak, 2017. "Robust stochastic vehicle routing and scheduling for bushfire emergency evacuation: An Australian case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 32-49.
    12. Kang, Seungmo & Ouyang, Yanfeng, 2011. "The traveling purchaser problem with stochastic prices: Exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 209(3), pages 265-272, March.
    13. Jian Yang & Patrick Jaillet & Hani Mahmassani, 2004. "Real-Time Multivehicle Truckload Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 38(2), pages 135-148, May.
    14. Majid Salavati-Khoshghalb & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A Rule-Based Recourse for the Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 53(5), pages 1334-1353, September.
    15. Luca Bertazzi & Nicola Secomandi, 2020. "Technical Note—Worst-Case Benefit of Restocking for the Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 68(3), pages 671-675, May.
    16. Tan, K.C. & Cheong, C.Y. & Goh, C.K., 2007. "Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation," European Journal of Operational Research, Elsevier, vol. 177(2), pages 813-839, March.
    17. Langevin, André & Mbaraga, Pontien & Campbell, James F., 1996. "Continuous approximation models in freight distribution: An overview," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 163-188, June.
    18. Gilbert Laporte & FranÇois V. Louveaux & Luc van Hamme, 2002. "An Integer L -Shaped Algorithm for the Capacitated Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 50(3), pages 415-423, June.
    19. Nicola Secomandi, 2001. "A Rollout Policy for the Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 49(5), pages 796-802, October.
    20. Novoa, Clara & Storer, Robert, 2009. "An approximate dynamic programming approach for the vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 196(2), pages 509-515, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:162:y:2005:i:1:p:206-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.