IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v68y2020i3p671-675.html
   My bibliography  Save this article

Technical Note—Worst-Case Benefit of Restocking for the Vehicle Routing Problem with Stochastic Demands

Author

Listed:
  • Luca Bertazzi

    (Department of Economics and Management, University of Brescia, 25122 Brescia, Italy)

  • Nicola Secomandi

    (Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

Abstract

The extant literature on the vehicle routing problem with stochastic demands indicates that the restocking strategy yields moderate percentage expected cost reductions relative to the a priori approach but lacks theoretical support for this improvement. We conduct a worst-case analysis that corroborates the observed restocking benefits and enhances our understanding of a foundational model in logistics under uncertainty.

Suggested Citation

  • Luca Bertazzi & Nicola Secomandi, 2020. "Technical Note—Worst-Case Benefit of Restocking for the Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 68(3), pages 671-675, May.
  • Handle: RePEc:inm:oropre:v:68:y:2020:i:3:p:671-675
    DOI: 10.1287/opre.2019.1901
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2019.1901
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2019.1901?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gendreau, Michel & Laporte, Gilbert & Seguin, Rene, 1996. "Stochastic vehicle routing," European Journal of Operational Research, Elsevier, vol. 88(1), pages 3-12, January.
    2. Carlsson, John Gunnar & Behroozi, Mehdi, 2017. "Worst-case demand distributions in vehicle routing," European Journal of Operational Research, Elsevier, vol. 256(2), pages 462-472.
    3. Dimitris J. Bertsimas, 1992. "A Vehicle Routing Problem with Stochastic Demand," Operations Research, INFORMS, vol. 40(3), pages 574-585, June.
    4. Moshe Dror & Gilbert Laporte & Pierre Trudeau, 1989. "Vehicle Routing with Stochastic Demands: Properties and Solution Frameworks," Transportation Science, INFORMS, vol. 23(3), pages 166-176, August.
    5. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    6. Dimitris J. Bertsimas & Patrick Jaillet & Amedeo R. Odoni, 1990. "A Priori Optimization," Operations Research, INFORMS, vol. 38(6), pages 1019-1033, December.
    7. Michel Gendreau & Ola Jabali & Walter Rei, 2016. "50th Anniversary Invited Article—Future Research Directions in Stochastic Vehicle Routing," Transportation Science, INFORMS, vol. 50(4), pages 1163-1173, November.
    8. Moshe Dror, 2002. "Vehicle Routing with Stochastic Demands: Models & Computational Methods," International Series in Operations Research & Management Science, in: Moshe Dror & Pierre L’Ecuyer & Ferenc Szidarovszky (ed.), Modeling Uncertainty, chapter 0, pages 625-649, Springer.
    9. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2018. "The stochastic vehicle routing problem, a literature review, part I: models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 193-221, September.
    10. Dimitris Bertsimas & Philippe Chervi & Michael Peterson, 1995. "Computational Approaches to Stochastic Vehicle Routing Problems," Transportation Science, INFORMS, vol. 29(4), pages 342-352, November.
    11. Dimitris J. Bertsimas & David Simchi-Levi, 1996. "A New Generation of Vehicle Routing Research: Robust Algorithms, Addressing Uncertainty," Operations Research, INFORMS, vol. 44(2), pages 286-304, April.
    12. Stewart, William R. & Golden, Bruce L., 1983. "Stochastic vehicle routing: A comprehensive approach," European Journal of Operational Research, Elsevier, vol. 14(4), pages 371-385, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De La Vega, Jonathan & Gendreau, Michel & Morabito, Reinaldo & Munari, Pedro & Ordóñez, Fernando, 2023. "An integer L-shaped algorithm for the vehicle routing problem with time windows and stochastic demands," European Journal of Operational Research, Elsevier, vol. 308(2), pages 676-695.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bertazzi, Luca & Secomandi, Nicola, 2018. "Faster rollout search for the vehicle routing problem with stochastic demands and restocking," European Journal of Operational Research, Elsevier, vol. 270(2), pages 487-497.
    2. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.
    3. Nicola Secomandi & François Margot, 2009. "Reoptimization Approaches for the Vehicle-Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 57(1), pages 214-230, February.
    4. Florio, Alexandre M. & Hartl, Richard F. & Minner, Stefan, 2020. "Optimal a priori tour and restocking policy for the single-vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 285(1), pages 172-182.
    5. Gilbert Laporte & FranÇois V. Louveaux & Luc van Hamme, 2002. "An Integer L -Shaped Algorithm for the Capacitated Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 50(3), pages 415-423, June.
    6. Wen-Huei Yang & Kamlesh Mathur & Ronald H. Ballou, 2000. "Stochastic Vehicle Routing Problem with Restocking," Transportation Science, INFORMS, vol. 34(1), pages 99-112, February.
    7. De La Vega, Jonathan & Gendreau, Michel & Morabito, Reinaldo & Munari, Pedro & Ordóñez, Fernando, 2023. "An integer L-shaped algorithm for the vehicle routing problem with time windows and stochastic demands," European Journal of Operational Research, Elsevier, vol. 308(2), pages 676-695.
    8. Nicola Secomandi, 2001. "A Rollout Policy for the Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 49(5), pages 796-802, October.
    9. Novoa, Clara & Storer, Robert, 2009. "An approximate dynamic programming approach for the vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 196(2), pages 509-515, July.
    10. Prasanna Balaprakash & Mauro Birattari & Thomas Stützle & Marco Dorigo, 2015. "Estimation-based metaheuristics for the single vehicle routing problem with stochastic demands and customers," Computational Optimization and Applications, Springer, vol. 61(2), pages 463-487, June.
    11. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2006. "Exploiting Knowledge About Future Demands for Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 40(2), pages 211-225, May.
    12. Majid Salavati-Khoshghalb & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A Rule-Based Recourse for the Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 53(5), pages 1334-1353, September.
    13. Anupam Gupta & Viswanath Nagarajan & R. Ravi, 2012. "Technical Note---Approximation Algorithms for VRP with Stochastic Demands," Operations Research, INFORMS, vol. 60(1), pages 123-127, February.
    14. E. Angelelli & R. Mansini & M. Vindigni, 2016. "The Stochastic and Dynamic Traveling Purchaser Problem," Transportation Science, INFORMS, vol. 50(2), pages 642-658, May.
    15. Luo, Zhixing & Qin, Hu & Zhang, Dezhi & Lim, Andrew, 2016. "Adaptive large neighborhood search heuristics for the vehicle routing problem with stochastic demands and weight-related cost," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 69-89.
    16. Walter Rei & Michel Gendreau & Patrick Soriano, 2010. "A Hybrid Monte Carlo Local Branching Algorithm for the Single Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 44(1), pages 136-146, February.
    17. Aykagan Ak & Alan L. Erera, 2007. "A Paired-Vehicle Recourse Strategy for the Vehicle-Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 41(2), pages 222-237, May.
    18. Goodson, Justin C. & Ohlmann, Jeffrey W. & Thomas, Barrett W., 2012. "Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 217(2), pages 312-323.
    19. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2005. "Decision Support for Consumer Direct Grocery Initiatives," Transportation Science, INFORMS, vol. 39(3), pages 313-327, August.
    20. Majid Salavati-Khoshghalb & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A hybrid recourse policy for the vehicle routing problem with stochastic demands," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 269-298, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:68:y:2020:i:3:p:671-675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.