IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v140y2002i1p61-87.html
   My bibliography  Save this article

Stochastic conditional and unconditional warfare

Author

Listed:
  • Hausken, Kjell
  • Moxnes, John F.

Abstract

No abstract is available for this item.

Suggested Citation

  • Hausken, Kjell & Moxnes, John F., 2002. "Stochastic conditional and unconditional warfare," European Journal of Operational Research, Elsevier, vol. 140(1), pages 61-87, July.
  • Handle: RePEc:eee:ejores:v:140:y:2002:i:1:p:61-87
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(01)00229-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herbert K. Weiss, 1962. "Letter to the Editor---The Fiske Model of Warfare," Operations Research, INFORMS, vol. 10(4), pages 569-571, August.
    2. Shahrooz Parkhideh & A. V. Gafarian, 1996. "General solution to many‐on‐many heterogeneous stochastic combat," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(7), pages 937-953, October.
    3. C. J. Ancker, 1995. "A proposed foundation for a theory of combat," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(3), pages 311-343, April.
    4. James G. Taylor & Gerald G. Brown, 1983. "Annihilation Prediction for Lanchester-Type Models of Modern Warfare," Operations Research, INFORMS, vol. 31(4), pages 752-771, August.
    5. Herbert K. Weiss, 1966. "Combat Models and Historical Data: The U.S. Civil War," Operations Research, INFORMS, vol. 14(5), pages 759-790, October.
    6. A. V. Gafarian & K. R. Manion, 1989. "Some two‐on‐two homogeneous stochastic combats," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(6), pages 721-764, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kress, Moshe & Caulkins, Jonathan P. & Feichtinger, Gustav & Grass, Dieter & Seidl, Andrea, 2018. "Lanchester model for three-way combat," European Journal of Operational Research, Elsevier, vol. 264(1), pages 46-54.
    2. Liles, Joseph M. & Robbins, Matthew J. & Lunday, Brian J., 2023. "Improving defensive air battle management by solving a stochastic dynamic assignment problem via approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1435-1449.
    3. Anelí Bongers & José L. Torres, 2021. "A bottleneck combat model: an application to the Battle of Thermopylae," Operational Research, Springer, vol. 21(4), pages 2859-2877, December.
    4. Gregory Levitin & Kjell Hausken, 2010. "Resource Distribution in Multiple Attacks Against a Single Target," Risk Analysis, John Wiley & Sons, vol. 30(8), pages 1231-1239, August.
    5. Kjell Hausken, 2020. "Governmental combat of migration between competing terrorist organisations," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(3), pages 21-46.
    6. Kjell Hausken, 2005. "Production and Conflict Models Versus Rent-Seeking Models," Public Choice, Springer, vol. 123(1), pages 59-93, April.
    7. Duffey, Romney B, 2017. "Dynamic theory of losses in wars and conflicts," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1013-1027.
    8. Kjell Hausken & John F. Moxnes, 2005. "Approximations and empirics for stochastic war equations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(7), pages 682-700, October.
    9. C-Y Hung & G K Yang & P S Deng & T Tang & S-P Lan & P Chu, 2005. "Fitting Lanchester's square law to the Ardennes Campaign," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 942-946, August.
    10. Hausken, Kjell, 2019. "Governmental combat of the dynamics of multiple competing terrorist organizations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 33-55.
    11. Michael J Armstrong, 2014. "The salvo combat model with a sequential exchange of fire," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(10), pages 1593-1601, October.
    12. Liu, Liwei & Yu, Jun & Guo, Zhi, 2006. "A kind of stochastic duel model for guerrilla war," European Journal of Operational Research, Elsevier, vol. 171(2), pages 430-438, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael J. Armstrong, 2004. "Effects of lethality in naval combat models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(1), pages 28-43, February.
    2. Gregory Levitin & Kjell Hausken, 2012. "Resource Distribution in Multiple Attacks with Imperfect Detection of the Attack Outcome," Risk Analysis, John Wiley & Sons, vol. 32(2), pages 304-318, February.
    3. M.P. Wiper & L.I. Pettit & K.D.S. Young, 2000. "Bayesian inference for a Lanchester type combat model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(7), pages 541-558, October.
    4. Chad W. Seagren & Donald P. Gaver & Patricia A. Jacobs, 2019. "A stochastic air combat logistics decision model for Blue versus Red opposition," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 663-674, December.
    5. Ian R. Johnson & Niall J. MacKay, 2011. "Lanchester models and the battle of Britain," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(3), pages 210-222, April.
    6. Gregory Levitin & Kjell Hausken, 2010. "Resource Distribution in Multiple Attacks Against a Single Target," Risk Analysis, John Wiley & Sons, vol. 30(8), pages 1231-1239, August.
    7. Chen, Lei & Kou, Yingxin & Li, Zhanwu & Xu, An & Wu, Cheng, 2018. "Empirical research on complex networks modeling of combat SoS based on data from real war-game, Part I: Statistical characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 754-773.
    8. Jerome Bracken, 1995. "Lanchester models of the ardennes campaign," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(4), pages 559-577, June.
    9. Ken R. McNaught, 2002. "Markovian models of three‐on‐one combat involving a hidden defender," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(7), pages 627-646, October.
    10. Jack Hirshleifer, 2000. "The Macrotechnology of Conflict," Journal of Conflict Resolution, Peace Science Society (International), vol. 44(6), pages 773-792, December.
    11. Pettit, L. I. & Wiper, M. P. & Young, K. D. S., 2003. "Bayesian inference for some Lanchester combat laws," European Journal of Operational Research, Elsevier, vol. 148(1), pages 152-165, July.
    12. González, Eduardo & Villena, Marcelo, 2011. "Spatial Lanchester models," European Journal of Operational Research, Elsevier, vol. 210(3), pages 706-715, May.
    13. Dean S. Hartley & Robert L. Helmbold, 1995. "Validating Lanchester's square law and other attrition models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(4), pages 609-633, June.
    14. N E Ozdemirel & L Kandiller, 2006. "Semi-dynamic modelling of heterogeneous land combat," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 38-51, January.
    15. Anderton,Charles H. & Carter,John R., 2009. "Principles of Conflict Economics," Cambridge Books, Cambridge University Press, number 9780521875578, December.
    16. Robert L. Helmbold & Allan S. Rehm, 1995. "“The influence of the numerical strength of engaged forces in their casualties,” by M. Osipov," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(3), pages 435-490, April.
    17. Patrick S. Chen & Peter Chu, 2001. "Applying Lanchester's linear law to model the Ardennes campaign," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(8), pages 653-661, December.
    18. Thomas W. Lucas & John E. McGunnigle, 2003. "When is model complexity too much? Illustrating the benefits of simple models with Hughes' salvo equations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(3), pages 197-217, April.
    19. Kjell Hausken & John F. Moxnes, 2005. "Approximations and empirics for stochastic war equations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(7), pages 682-700, October.
    20. Michael J. Armstrong & Steven E. Sodergren, 2015. "Refighting Pickett's Charge: Mathematical Modeling of the Civil War Battlefield," Social Science Quarterly, Southwestern Social Science Association, vol. 96(4), pages 1153-1168, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:140:y:2002:i:1:p:61-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.