IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v42y1995i6p873-887.html
   My bibliography  Save this article

Optimal force mix in heterogeneous combat

Author

Listed:
  • N. K. Jaiswal
  • Meena Kumari
  • B. S. Nagabhushana

Abstract

This article presents models for determining the optimum number of Red weapons required to win a heterogeneous combat in which m(m> 1) types of Red weapons face a single type of Blue weapon under a newly defined termination policy. Red aims at either minimizing the total cost or maximizing the aggregated remaining force strength. Kuhn‐Tucker and simulated annealing techniques are used for obtaining the optimal solution. The methodology is illustrated by analysing heterogeneous combat to determine (i) the feasibility of introducing new types of weapons and (ii) the number of weapons required to win if a specific type of weapon, say infantry, dominates. © 1995 John Wiley & Sons, Inc.

Suggested Citation

  • N. K. Jaiswal & Meena Kumari & B. S. Nagabhushana, 1995. "Optimal force mix in heterogeneous combat," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(6), pages 873-887, September.
  • Handle: RePEc:wly:navres:v:42:y:1995:i:6:p:873-887
    DOI: 10.1002/1520-6750(199509)42:63.0.CO;2-D
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(199509)42:63.0.CO;2-D
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(199509)42:63.0.CO;2-D?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. N. K. Jaiswal & B. S. Nagabhushana, 1995. "Termination decision rules in combat attrition models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(3), pages 419-433, April.
    2. Glover, Fred & Greenberg, Harvey J., 1989. "New approaches for heuristic search: A bilateral linkage with artificial intelligence," European Journal of Operational Research, Elsevier, vol. 39(2), pages 119-130, March.
    3. James G. Taylor & Gerald G. Brown, 1983. "Annihilation Prediction for Lanchester-Type Models of Modern Warfare," Operations Research, INFORMS, vol. 31(4), pages 752-771, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grolimund, Stephan & Ganascia, Jean-Gabriel, 1997. "Driving Tabu Search with case-based reasoning," European Journal of Operational Research, Elsevier, vol. 103(2), pages 326-338, December.
    2. Pirlot, Marc, 1996. "General local search methods," European Journal of Operational Research, Elsevier, vol. 92(3), pages 493-511, August.
    3. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    4. Stephen Biddle & Stephen Long, 2004. "Democracy and Military Effectiveness," Journal of Conflict Resolution, Peace Science Society (International), vol. 48(4), pages 525-546, August.
    5. González, Eduardo & Villena, Marcelo, 2011. "Spatial Lanchester models," European Journal of Operational Research, Elsevier, vol. 210(3), pages 706-715, May.
    6. Chad W. Seagren & Donald P. Gaver & Patricia A. Jacobs, 2019. "A stochastic air combat logistics decision model for Blue versus Red opposition," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 663-674, December.
    7. N E Ozdemirel & L Kandiller, 2006. "Semi-dynamic modelling of heterogeneous land combat," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 38-51, January.
    8. Israel David, 1995. "Lanchester modeling and the biblical account of the battles of gibeah," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(4), pages 579-584, June.
    9. B Suman & P Kumar, 2006. "A survey of simulated annealing as a tool for single and multiobjective optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1143-1160, October.
    10. Patrick S. Chen & Peter Chu, 2001. "Applying Lanchester's linear law to model the Ardennes campaign," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(8), pages 653-661, December.
    11. Alan Levitan & Mahesh Gupta, 1996. "Using Genetic Algorithms to Optimize the Selection of Cost Drivers in Activity‐based Costing," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 5(3), pages 129-145, September.
    12. Michael J. Armstrong, 2004. "Effects of lethality in naval combat models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(1), pages 28-43, February.
    13. Kjell Hausken & John F. Moxnes, 2005. "Approximations and empirics for stochastic war equations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(7), pages 682-700, October.
    14. Michael J. Armstrong & Steven E. Sodergren, 2015. "Refighting Pickett's Charge: Mathematical Modeling of the Civil War Battlefield," Social Science Quarterly, Southwestern Social Science Association, vol. 96(4), pages 1153-1168, December.
    15. Gregory Levitin & Kjell Hausken, 2012. "Resource Distribution in Multiple Attacks with Imperfect Detection of the Attack Outcome," Risk Analysis, John Wiley & Sons, vol. 32(2), pages 304-318, February.
    16. Otto, Alena & Scholl, Armin, 2011. "Incorporating ergonomic risks into assembly line balancing," European Journal of Operational Research, Elsevier, vol. 212(2), pages 277-286, July.
    17. Hausken, Kjell & Moxnes, John F., 2002. "Stochastic conditional and unconditional warfare," European Journal of Operational Research, Elsevier, vol. 140(1), pages 61-87, July.
    18. G T Kaup & D J Kaup & N M Finkelstein, 2005. "The Lanchester (n, 1) problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(12), pages 1399-1407, December.
    19. Ian R. Johnson & Niall J. MacKay, 2011. "Lanchester models and the battle of Britain," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(3), pages 210-222, April.
    20. Srivastava, Bharatendu & Chen, Wun-Hwa, 1996. "Batching in production planning for flexible manufacturing systems," International Journal of Production Economics, Elsevier, vol. 43(2-3), pages 127-137, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:42:y:1995:i:6:p:873-887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.