IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v58y2011i3p210-222.html
   My bibliography  Save this article

Lanchester models and the battle of Britain

Author

Listed:
  • Ian R. Johnson
  • Niall J. MacKay

Abstract

We fit deterministic generalized Lanchester models to daily sortie and loss data from the Battle of Britain. The best fit for the period 14th August to 30th October 1940 is δB ∼ G1.2, δG ∼ G0.9, where B and G are RAF Fighter Command and Luftwaffe sortie numbers, and δB and δG are daily loss numbers, respectively. The data naturally divide into two phases, with losses (as a proportion of overall sortie numbers) much reduced after 15th September. Fits were generally better for the first phase than for the second, and for British losses than for German; in every case the dependence on G is stronger than that on B. Days with higher sortie numbers on average favored the Luftwaffe, whereas the loss‐ratio was not significantly dependent on the force ratio. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 58: 210–222, 2011

Suggested Citation

  • Ian R. Johnson & Niall J. MacKay, 2011. "Lanchester models and the battle of Britain," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(3), pages 210-222, April.
  • Handle: RePEc:wly:navres:v:58:y:2011:i:3:p:210-222
    DOI: 10.1002/nav.20328
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20328
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20328?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dean S. Hartley, 1995. "A mathematical model of attrition data," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(4), pages 585-607, June.
    2. J. H. Engel, 1954. "A Verification of Lanchester's Law," Operations Research, INFORMS, vol. 2(2), pages 163-171, May.
    3. Patrick S. Chen & Peter Chu, 2001. "Applying Lanchester's linear law to model the Ardennes campaign," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(8), pages 653-661, December.
    4. Ladislav Dolanský, 1964. "Present State of the Lanchester Theory of Combat," Operations Research, INFORMS, vol. 12(2), pages 344-358, April.
    5. Joseph F. McCloskey, 1987. "OR Forum—The Beginnings of Operations Research: 1934–1941," Operations Research, INFORMS, vol. 35(1), pages 143-152, February.
    6. Jerome Bracken, 1995. "Lanchester models of the ardennes campaign," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(4), pages 559-577, June.
    7. Robert L. Helmbold, 1965. "Letter to the Editor—A Modification of Lanchester's Equations," Operations Research, INFORMS, vol. 13(5), pages 857-859, October.
    8. Dean S. Hartley & Robert L. Helmbold, 1995. "Validating Lanchester's square law and other attrition models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(4), pages 609-633, June.
    9. James G. Taylor & Gerald G. Brown, 1983. "Annihilation Prediction for Lanchester-Type Models of Modern Warfare," Operations Research, INFORMS, vol. 31(4), pages 752-771, August.
    10. S. J. Deitchman, 1962. "A Lanchester Model of Guerrilla Warfare," Operations Research, INFORMS, vol. 10(6), pages 818-827, December.
    11. M.P. Wiper & L.I. Pettit & K.D.S. Young, 2000. "Bayesian inference for a Lanchester type combat model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(7), pages 541-558, October.
    12. Herbert K. Weiss, 1966. "Combat Models and Historical Data: The U.S. Civil War," Operations Research, INFORMS, vol. 14(5), pages 759-790, October.
    13. C. J. Ancker & A. V. Gafarian, 1987. "The validity of assumptions underlying current uses of Lanchester attrition rates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(4), pages 505-533, August.
    14. Ronald D. Fricker, 1998. "Attrition models of the Ardennes campaign," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(1), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McCartney, Mark, 2022. "The solution of Lanchester’s equations with inter-battle reinforcement strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    2. Chad W. Seagren & Donald P. Gaver & Patricia A. Jacobs, 2019. "A stochastic air combat logistics decision model for Blue versus Red opposition," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 663-674, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M.P. Wiper & L.I. Pettit & K.D.S. Young, 2000. "Bayesian inference for a Lanchester type combat model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(7), pages 541-558, October.
    2. Patrick S. Chen & Peter Chu, 2001. "Applying Lanchester's linear law to model the Ardennes campaign," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(8), pages 653-661, December.
    3. Thomas W. Lucas & Turker Turkes, 2004. "Fitting Lanchester equations to the battles of Kursk and Ardennes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(1), pages 95-116, February.
    4. Gerardo Minguela-Castro & Ruben Heradio & Carlos Cerrada, 2021. "Automated Support for Battle Operational–Strategic Decision-Making," Mathematics, MDPI, vol. 9(13), pages 1-15, June.
    5. Chad W. Seagren & Donald P. Gaver & Patricia A. Jacobs, 2019. "A stochastic air combat logistics decision model for Blue versus Red opposition," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 663-674, December.
    6. Kjell Hausken & John F. Moxnes, 2005. "Approximations and empirics for stochastic war equations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(7), pages 682-700, October.
    7. C-Y Hung & G K Yang & P S Deng & T Tang & S-P Lan & P Chu, 2005. "Fitting Lanchester's square law to the Ardennes Campaign," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 942-946, August.
    8. Pettit, L. I. & Wiper, M. P. & Young, K. D. S., 2003. "Bayesian inference for some Lanchester combat laws," European Journal of Operational Research, Elsevier, vol. 148(1), pages 152-165, July.
    9. Anelí Bongers & José L. Torres, 2021. "A bottleneck combat model: an application to the Battle of Thermopylae," Operational Research, Springer, vol. 21(4), pages 2859-2877, December.
    10. Kress, Moshe & Caulkins, Jonathan P. & Feichtinger, Gustav & Grass, Dieter & Seidl, Andrea, 2018. "Lanchester model for three-way combat," European Journal of Operational Research, Elsevier, vol. 264(1), pages 46-54.
    11. Jerome Bracken, 1995. "Lanchester models of the ardennes campaign," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(4), pages 559-577, June.
    12. Hsi-Mei Chen, 2002. "An Inverse Problem of the Lanchester Square Law in Estimating Time-Dependent Attrition Coefficients," Operations Research, INFORMS, vol. 50(2), pages 389-394, April.
    13. N J MacKay, 2009. "Lanchester models for mixed forces with semi-dynamical target allocation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(10), pages 1421-1427, October.
    14. Ronald D. Fricker, 1998. "Attrition models of the Ardennes campaign," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(1), pages 1-22, February.
    15. P.S. Sheeba & Debasish Ghose, 2008. "Optimal resource allocation and redistribution strategy in military conflicts with Lanchester square law attrition," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(6), pages 581-591, September.
    16. Michael J. Armstrong, 2004. "Effects of lethality in naval combat models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(1), pages 28-43, February.
    17. Jesús Fernández-Villaverde & Mark Koyama & Youhong Lin & Tuan-Hwee Sng, 2023. "The Fractured-Land Hypothesis," The Quarterly Journal of Economics, Oxford University Press, vol. 138(2), pages 1173-1231.
    18. Kendall D. Moll & Gregory M. Luebbert, 1980. "Arms Race and Military Expenditure Models," Journal of Conflict Resolution, Peace Science Society (International), vol. 24(1), pages 153-185, March.
    19. Hausken, Kjell & Moxnes, John F., 2002. "Stochastic conditional and unconditional warfare," European Journal of Operational Research, Elsevier, vol. 140(1), pages 61-87, July.
    20. David L. Bitters, 1995. "Efficient concentration of forces, or how to fight outnumbered and win," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(3), pages 397-418, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:58:y:2011:i:3:p:210-222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.