IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v160y2011i2p289-299.html
   My bibliography  Save this article

The Hausman test and weak instruments

Author

Listed:
  • Hahn, Jinyong
  • Ham, John C.
  • Moon, Hyungsik Roger

Abstract

We consider the following problem. There is a structural equation of interest that contains an explanatory variable that theory predicts is endogenous. There are one or more instrumental variables that credibly are exogenous with regard to this structural equation, but which have limited explanatory power for the endogenous variable. Further, there is one or more potentially 'strong' instruments, which has much more explanatory power but which may not be exogenous. Hausman (1978) provided a test for the exogeneity of the second instrument when none of the instruments are weak. Here, we focus on how the standard Hausman test does in the presence of weak instruments using the Staiger-Stock asymptotics. It is natural to conjecture that the standard version of the Hausman test would be invalid in the weak instrument case, which we confirm. However, we provide a version of the Hausman test that is valid even in the presence of weak IV and illustrate how to implement the test in the presence of heteroskedasticity. We show that the situation we analyze occurs in several important economic examples. Our Monte Carlo experiments show that our procedure works relatively well in finite samples. We should note that our test is not consistent, although we believe that it is impossible to construct a consistent test with weak instruments.

Suggested Citation

  • Hahn, Jinyong & Ham, John C. & Moon, Hyungsik Roger, 2011. "The Hausman test and weak instruments," Journal of Econometrics, Elsevier, vol. 160(2), pages 289-299, February.
  • Handle: RePEc:eee:econom:v:160:y:2011:i:2:p:289-299
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(10)00189-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. W. K. Andrews, 2003. "End-of-Sample Instability Tests," Econometrica, Econometric Society, vol. 71(6), pages 1661-1694, November.
    2. Donald, Stephen G & Newey, Whitney K, 2001. "Choosing the Number of Instruments," Econometrica, Econometric Society, vol. 69(5), pages 1161-1191, September.
    3. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    4. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    5. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    6. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, May.
    7. Jinyong Hahn & Jerry Hausman, 2002. "A New Specification Test for the Validity of Instrumental Variables," Econometrica, Econometric Society, vol. 70(1), pages 163-189, January.
    8. John C. Ham & Kevin T. Reilly, 2002. "Testing Intertemporal Substitution, Implicit Contracts, and Hours Restriction Models of the Labor Market Using Micro Data," American Economic Review, American Economic Association, vol. 92(4), pages 905-927, September.
    9. Strauss, John & Thomas, Duncan, 1995. "Human resources: Empirical modeling of household and family decisions," Handbook of Development Economics, in: Hollis Chenery & T.N. Srinivasan (ed.), Handbook of Development Economics, edition 1, volume 3, chapter 34, pages 1883-2023, Elsevier.
    10. Altonji, Joseph G, 1986. "Intertemporal Substitution in Labor Supply: Evidence from Micro Data," Journal of Political Economy, University of Chicago Press, vol. 94(3), pages 176-215, June.
    11. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Di Giorgio & Massimo Filippini & Giuliano Masiero, 2014. "The relationship between costs and quality in nonprofit nursing homes," IdEP Economic Papers 1402, USI Università della Svizzera italiana.
    2. Doko Tchatoka, Firmin, 2012. "On the Validity of Durbin-Wu-Hausman Tests for Assessing Partial Exogeneity Hypotheses with Possibly Weak Instruments," MPRA Paper 40184, University Library of Munich, Germany.
    3. Tetsuya Kaji, 2019. "Theory of Weak Identification in Semiparametric Models," Papers 1908.10478, arXiv.org, revised Aug 2020.
    4. Ruprecht, Benedikt & Entrop, Oliver & Kick, Thomas & Wilkens, Marco, 2013. "Market timing, maturity mismatch, and risk management: Evidence from the banking industry," Discussion Papers 56/2013, Deutsche Bundesbank.
    5. Christian Danne, 2015. "Regional Integration and the Rule of Law," FIW Working Paper series 157, FIW.
    6. Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
    7. James Hansen, 2011. "Does Equity Mispricing Influence Household and Firm Decisions?," RBA Research Discussion Papers rdp2011-06, Reserve Bank of Australia.
    8. Or Levkovich & Jan Rouwendal & Jos van Ommeren, 2017. "The impact of highways on population redistribution: The role of land development restrictions," Tinbergen Institute Discussion Papers 17-109/VIII, Tinbergen Institute.
    9. Seri, Paolo & Zanfei, Antonello, 2013. "The co-evolution of ICT, skills and organization in public administrations: Evidence from new European country-level data," Structural Change and Economic Dynamics, Elsevier, vol. 27(C), pages 160-176.
    10. Kiviet, Jan F. & Pleus, Milan, 2017. "The performance of tests on endogeneity of subsets of explanatory variables scanned by simulation," Econometrics and Statistics, Elsevier, vol. 2(C), pages 1-21.
    11. L. Di Giorgio & M. Filippini & G. Masiero, 2016. "Is higher nursing home quality more costly?," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 17(8), pages 1011-1026, November.
    12. Kinclová Lenka, 2015. "Legitimacy of the “Humanitarian Military Intervention”: An Empirical Assessment," Peace Economics, Peace Science, and Public Policy, De Gruyter, vol. 21(1), pages 111-152, January.
    13. Doko Tchatoka, Firmin, 2011. "Testing for partial exogeneity with weak identification," MPRA Paper 39504, University Library of Munich, Germany, revised Mar 2012.
    14. Woutersen, Tiemen & Hausman, Jerry A., 2019. "Increasing the power of specification tests," Journal of Econometrics, Elsevier, vol. 211(1), pages 166-175.
    15. Jonathan Chapman, 2019. "The contribution of infrastructure investment to Britain's urban mortality decline, 1861–1900," Economic History Review, Economic History Society, vol. 72(1), pages 233-259, February.
    16. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    17. Bertille Antoine & Eric Renault, 2017. "On the relevance of weaker instruments," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 928-945, October.
    18. Tiemen M. Woutersen & Jerry Hausman, 2018. "Increasing the power of specification tests," CeMMAP working papers CWP46/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Reda Cherif & Fuad Hasanov & Lichen Wang, 2018. "Sharp Instrument: A Stab at Identifying the Causes of Economic Growth," IMF Working Papers 2018/117, International Monetary Fund.
    20. Li, Yan & Lyons, Bruce, 2012. "Market structure, regulation and the speed of mobile network penetration," International Journal of Industrial Organization, Elsevier, vol. 30(6), pages 697-707.
    21. Escobal, Javier A. & Cavero, Denice, 2012. "Transaction Costs, Institutional Arrangements and Inequality Outcomes: Potato Marketing by Small Producers in Rural Peru," World Development, Elsevier, vol. 40(2), pages 329-341.
    22. Inoue, Atsushi & Rossi, Barbara, 2011. "Testing for weak identification in possibly nonlinear models," Journal of Econometrics, Elsevier, vol. 161(2), pages 246-261, April.
    23. Tuğba KAYHAN & Temur KAYHAN & Engin YARBAŞI, 2019. "Profit management in the case of financial distress and global volatile market behaviour: Evidence from Borsa Istanbul Stock Exchange," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(3(620), A), pages 179-192, Autumn.
    24. Daria Ciriaci & Sandro Montresor & Daniela Palma, 2013. "Do KIBS make manufacturing more innovative? An empirical investigation for four European countries," JRC Working Papers on Corporate R&D and Innovation 2013-04, Joint Research Centre (Seville site).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bekker, Paul A. & Lawford, Steve, 2008. "Symmetry-based inference in an instrumental variable setting," Journal of Econometrics, Elsevier, vol. 142(1), pages 28-49, January.
    2. Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
    3. Wang, Wenjie & Doko Tchatoka, Firmin, 2018. "On Bootstrap inconsistency and Bonferroni-based size-correction for the subset Anderson–Rubin test under conditional homoskedasticity," Journal of Econometrics, Elsevier, vol. 207(1), pages 188-211.
    4. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    5. Doko Tchatoka, Firmin Sabro & Dufour, Jean-Marie, 2008. "Instrument endogeneity and identification-robust tests: some analytical results," MPRA Paper 29613, University Library of Munich, Germany.
    6. Federico Crudu & Giovanni Mellace & Zsolt Sandor, 2017. "Inference in instrumental variables models with heteroskedasticity and many instruments," Department of Economics University of Siena 761, Department of Economics, University of Siena.
    7. Joel L. Horowitz, 2018. "Non-Asymptotic Inference in Instrumental Variables Estimation," Papers 1809.03600, arXiv.org.
    8. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    9. James L. Powell, 2017. "Identification and Asymptotic Approximations: Three Examples of Progress in Econometric Theory," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 107-124, Spring.
    10. Doko Tchatoka, Firmin, 2011. "Testing for partial exogeneity with weak identification," MPRA Paper 39504, University Library of Munich, Germany, revised Mar 2012.
    11. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    12. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    13. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
    14. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    15. Doko Tchatoka, Firmin & Dufour, Jean-Marie, 2020. "Exogeneity tests, incomplete models, weak identification and non-Gaussian distributions: Invariance and finite-sample distributional theory," Journal of Econometrics, Elsevier, vol. 218(2), pages 390-418.
    16. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    17. Kolesár, Michal, 2018. "Minimum distance approach to inference with many instruments," Journal of Econometrics, Elsevier, vol. 204(1), pages 86-100.
    18. Hansen, Christian & Hausman, Jerry & Newey, Whitney, 2008. "Estimation With Many Instrumental Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 398-422.
    19. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2012. "Optimal inference for instrumental variables regression with non-Gaussian errors," Journal of Econometrics, Elsevier, vol. 167(1), pages 1-15.
    20. Mikusheva, Anna, 2013. "Survey on statistical inferences in weakly-identified instrumental variable models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 29(1), pages 117-131.

    More about this item

    Keywords

    Hausman test Weak instruments;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:160:y:2011:i:2:p:289-299. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.