IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v501y2025ics0304380024003570.html
   My bibliography  Save this article

Fine-scale surface complexity promotes temperature extremes but reduces the spatial extent of refugia on coastal rocks

Author

Listed:
  • Barrett, T.J.
  • Li, M.
  • Gouhier, T.
  • Rilov, G.
  • Helmuth, B.
  • Choi, F.
  • Filin, S.
  • Müftü, S.

Abstract

The physical structure of microhabitats, especially orientation to direct solar radiation, can radically influence the body temperatures of individual organisms, their physiological performance, and survival. Using a numerical approach via finite element (FE) analysis to simulate the spatial and temporal temperature variations in rocky intertidal habitats, we systematically explored the role of substrate roughness in driving variability of surface temperatures at scales relevant to very small (cm) organisms. This approach accounts for three-dimensional heat exchange among fine-scale (mm-cm) surface features through radiation, convection, and conduction. Analyses were performed for a surface mapped using a terrestrial laser scanner at an intertidal site on the coast of Haifa, Israel. Simulation results provided comparable temperatures to those recorded in the field via infrared camera. A series of rough surfaces were generated numerically to explore relationships between the scale of surface roughness and microhabitat temperatures, and how these relationships changed both over a diurnal cycle and across seasons. Overall, increasing habitat complexity had little influence on the average temperature of a ∼1 m2 surface, despite differences of up to 25 °C among microhabitats within that surface. Temperature magnitudes of the hottest and coolest microhabitats increased markedly with roughness, generally supporting the ‘habitat heterogeneity hypothesis’ where a range of thermal microenvironments is predicted to increase with surface roughness. Here, we attribute this pattern to the observation that the presence of cool, shaded “valley” microhabitats is invariably accompanied by the presence of “peaks” exposed to full, direct solar radiation.

Suggested Citation

  • Barrett, T.J. & Li, M. & Gouhier, T. & Rilov, G. & Helmuth, B. & Choi, F. & Filin, S. & Müftü, S., 2025. "Fine-scale surface complexity promotes temperature extremes but reduces the spatial extent of refugia on coastal rocks," Ecological Modelling, Elsevier, vol. 501(C).
  • Handle: RePEc:eee:ecomod:v:501:y:2025:i:c:s0304380024003570
    DOI: 10.1016/j.ecolmodel.2024.110969
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024003570
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew J. Suggitt & Robert J. Wilson & Nick J. B. Isaac & Colin M. Beale & Alistair G. Auffret & Tom August & Jonathan J. Bennie & Humphrey Q. P. Crick & Simon Duffield & Richard Fox & John J. Hopkins, 2018. "Extinction risk from climate change is reduced by microclimatic buffering," Nature Climate Change, Nature, vol. 8(8), pages 713-717, August.
    2. Florides, G.A. & Pouloupatis, P.D. & Kalogirou, S. & Messaritis, V. & Panayides, I. & Zomeni, Z. & Partasides, G. & Lizides, A. & Sophocleous, E. & Koutsoumpas, K., 2011. "The geothermal characteristics of the ground and the potential of using ground coupled heat pumps in Cyprus," Energy, Elsevier, vol. 36(8), pages 5027-5036.
    3. Xiangyu You & Feng Tian & Wen Tang & Jian Chang & Jianjun Zhang, 2024. "Analytical C 2 Continuous Surface Blending," Mathematics, MDPI, vol. 12(19), pages 1-22, October.
    4. Wethey, David S. & Brin, Lindsay D. & Helmuth, Brian & Mislan, K.A.S., 2011. "Predicting intertidal organism temperatures with modified land surface models," Ecological Modelling, Elsevier, vol. 222(19), pages 3568-3576.
    5. Amanda E. Bates & Brian Helmuth & Michael T. Burrows & Murray I. Duncan & Joaquim Garrabou & Tamar Guy-Haim & Fernando Lima & Ana M. Queiros & Rui Seabra & Robert Marsh & Jonathan Belmaker & Nathaniel, 2018. "Biologists ignore ocean weather at their peril," Nature, Nature, vol. 560(7718), pages 299-301, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bakirci, Kadir & Colak, Derya, 2012. "Effect of a superheating and sub-cooling heat exchanger to the performance of a ground source heat pump system," Energy, Elsevier, vol. 44(1), pages 996-1004.
    2. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    3. Tsilingiridis, G. & Papakostas, K., 2014. "Investigating the relationship between air and ground temperature variations in shallow depths in northern Greece," Energy, Elsevier, vol. 73(C), pages 1007-1016.
    4. Muñoz, Mauricio & Garat, Pablo & Flores-Aqueveque, Valentina & Vargas, Gabriel & Rebolledo, Sofía & Sepúlveda, Sergio & Daniele, Linda & Morata, Diego & Parada, Miguel Ángel, 2015. "Estimating low-enthalpy geothermal energy potential for district heating in Santiago basin–Chile (33.5 °S)," Renewable Energy, Elsevier, vol. 76(C), pages 186-195.
    5. Atwany, Hanin & Hamdan, Mohammad O. & Abu-Nabah, Bassam A. & Alami, Abdul Hai & Attom, Mousa, 2020. "Experimental evaluation of ground heat exchanger in UAE," Renewable Energy, Elsevier, vol. 159(C), pages 538-546.
    6. Li, Min & Lai, Alvin C.K., 2012. "New temperature response functions (G functions) for pile and borehole ground heat exchangers based on composite-medium line-source theory," Energy, Elsevier, vol. 38(1), pages 255-263.
    7. Sławomir Kurpaska & Mirosław Janowski & Maciej Gliniak & Anna Krakowiak-Bal & Urszula Ziemiańczyk, 2021. "The Use of Geothermal Energy to Heating Crops under Cover: A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-25, May.
    8. Savoca, S. & Grifó, G. & Panarello, G. & Albano, M. & Giacobbe, S. & Capillo, G. & Spanó, N. & Consolo, G., 2020. "Modelling prey-predator interactions in Messina beachrock pools," Ecological Modelling, Elsevier, vol. 434(C).
    9. Yuna Zhang & Jing Li & Deren Liu, 2024. "Spatial Downscaling of ERA5 Reanalysis Air Temperature Data Based on Stacking Ensemble Learning," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    10. Kalogirou, Soteris A. & Florides, Georgios A. & Pouloupatis, Panayiotis D. & Panayides, Ioannis & Joseph-Stylianou, Josephina & Zomeni, Zomenia, 2012. "Artificial neural networks for the generation of geothermal maps of ground temperature at various depths by considering land configuration," Energy, Elsevier, vol. 48(1), pages 233-240.
    11. Borge-Diez, David & Colmenar-Santos, Antonio & Pérez-Molina, Clara & López-Rey, África, 2015. "Geothermal source heat pumps under energy services companies finance scheme to increase energy efficiency and production in stockbreeding facilities," Energy, Elsevier, vol. 88(C), pages 821-836.
    12. Kalogirou, Soteris A. & Florides, Georgios A. & Pouloupatis, Panayiotis D. & Christodoulides, Paul & Joseph-Stylianou, Josephina, 2015. "Artificial neural networks for the generation of a conductivity map of the ground," Renewable Energy, Elsevier, vol. 77(C), pages 400-407.
    13. Alex S. J. Wyatt & James J. Leichter & Libe Washburn & Li Kui & Peter J. Edmunds & Scott C. Burgess, 2023. "Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Maclean, Ilya M.D. & Klinges, David H., 2021. "Microclimc: A mechanistic model of above, below and within-canopy microclimate," Ecological Modelling, Elsevier, vol. 451(C).
    15. Pouloupatis, Panayiotis D. & Tassou, Savvas A. & Christodoulides, Paul & Florides, Georgios A., 2017. "Parametric analysis of the factors affecting the efficiency of ground heat exchangers and design application aspects in Cyprus," Renewable Energy, Elsevier, vol. 103(C), pages 721-728.
    16. Patrick Chavel & Hillel Fromm & Gil Rilov & Lewi Stone & Walter Hecq, 2019. "Cost-Benefit Analysis of the Achziv marine reserve expansion considering the Barcelona Convention and the EU Marine Strategy Framework Directive," Working Papers CEB 19-004, ULB -- Universite Libre de Bruxelles.
    17. Valeria Montalto & Brian Helmuth & Paolo M Ruti & Alessandro Dell’Aquila & Alessandro Rinaldi & Gianluca Sarà, 2016. "A mechanistic approach reveals non linear effects of climate warming on mussels throughout the Mediterranean sea," Climatic Change, Springer, vol. 139(2), pages 293-306, November.
    18. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Performance of a residential ground source heat pump system in sedimentary rock formation," Applied Energy, Elsevier, vol. 164(C), pages 89-98.
    19. Melo, A.P. & Cóstola, D. & Lamberts, R. & Hensen, J.L.M., 2014. "Development of surrogate models using artificial neural network for building shell energy labelling," Energy Policy, Elsevier, vol. 69(C), pages 457-466.
    20. Santilano, Alessandro & Donato, Assunta & Galgaro, Antonio & Montanari, Domenico & Menghini, Antonio & Viezzoli, Andrea & Di Sipio, Eloisa & Destro, Elisa & Manzella, Adele, 2016. "An integrated 3D approach to assess the geothermal heat-exchange potential: The case study of western Sicily (southern Italy)," Renewable Energy, Elsevier, vol. 97(C), pages 611-624.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:501:y:2025:i:c:s0304380024003570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.