IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35550-5.html
   My bibliography  Save this article

Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics

Author

Listed:
  • Alex S. J. Wyatt

    (The Hong Kong University of Science and Technology, Clear Water Bay)

  • James J. Leichter

    (University of California San Diego)

  • Libe Washburn

    (Marine Science Institute University of California
    University of California)

  • Li Kui

    (Marine Science Institute University of California)

  • Peter J. Edmunds

    (California State University)

  • Scott C. Burgess

    (Florida State University)

Abstract

The severity of marine heatwaves (MHWs) that are increasingly impacting ocean ecosystems, including vulnerable coral reefs, has primarily been assessed using remotely sensed sea-surface temperatures (SSTs), without information relevant to heating across ecosystem depths. Here, using a rare combination of SST, high-resolution in-situ temperatures, and sea level anomalies observed over 15 years near Moorea, French Polynesia, we document subsurface MHWs that have been paradoxical in comparison to SST metrics and associated with unexpected coral bleaching across depths. Variations in the depth range and severity of MHWs was driven by mesoscale (10s to 100s of km) eddies that altered sea levels and thermocline depths and decreased (2007, 2017 and 2019) or increased (2012, 2015, 2016) internal-wave cooling. Pronounced eddy-induced reductions in internal waves during early 2019 contributed to a prolonged subsurface MHW and unexpectedly severe coral bleaching, with subsequent mortality offsetting almost a decade of coral recovery. Variability in mesoscale eddy fields, and thus thermocline depths, is expected to increase with climate change, which, along with strengthening and deepening stratification, could increase the occurrence of subsurface MHWs over ecosystems historically insulated from surface ocean heating by the cooling effects of internal waves.

Suggested Citation

  • Alex S. J. Wyatt & James J. Leichter & Libe Washburn & Li Kui & Peter J. Edmunds & Scott C. Burgess, 2023. "Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35550-5
    DOI: 10.1038/s41467-022-35550-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35550-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35550-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Terry P. Hughes & James T. Kerry & Mariana Álvarez-Noriega & Jorge G. Álvarez-Romero & Kristen D. Anderson & Andrew H. Baird & Russell C. Babcock & Maria Beger & David R. Bellwood & Ray Berkelmans & T, 2017. "Global warming and recurrent mass bleaching of corals," Nature, Nature, vol. 543(7645), pages 373-377, March.
    2. Isaac Brito-Morales & David S. Schoeman & Jorge García Molinos & Michael T. Burrows & Carissa J. Klein & Nur Arafeh-Dalmau & Kristin Kaschner & Cristina Garilao & Kathleen Kesner-Reyes & Anthony J. Ri, 2020. "Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming," Nature Climate Change, Nature, vol. 10(6), pages 576-581, June.
    3. Aryan Safaie & Nyssa J. Silbiger & Timothy R. McClanahan & Geno Pawlak & Daniel J. Barshis & James L. Hench & Justin S. Rogers & Gareth J. Williams & Kristen A. Davis, 2018. "High frequency temperature variability reduces the risk of coral bleaching," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    4. Dan A. Smale & Thomas Wernberg & Eric C. J. Oliver & Mads Thomsen & Ben P. Harvey & Sandra C. Straub & Michael T. Burrows & Lisa V. Alexander & Jessica A. Benthuysen & Markus G. Donat & Ming Feng & Al, 2019. "Marine heatwaves threaten global biodiversity and the provision of ecosystem services," Nature Climate Change, Nature, vol. 9(4), pages 306-312, April.
    5. Neil J. Holbrook & Hillary A. Scannell & Alexander Gupta & Jessica A. Benthuysen & Ming Feng & Eric C. J. Oliver & Lisa V. Alexander & Michael T. Burrows & Markus G. Donat & Alistair J. Hobday & Pippa, 2019. "A global assessment of marine heatwaves and their drivers," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    6. S. Sully & D. E. Burkepile & M. K. Donovan & G. Hodgson & R. van Woesik, 2019. "A global analysis of coral bleaching over the past two decades," Nature Communications, Nature, vol. 10(1), pages 1-5, December.
    7. Xiuwen Guo & Yang Gao & Shaoqing Zhang & Lixin Wu & Ping Chang & Wenju Cai & Jakob Zscheischler & L. Ruby Leung & Justin Small & Gokhan Danabasoglu & Luanne Thompson & Huiwang Gao, 2022. "Threat by marine heatwaves to adaptive large marine ecosystems in an eddy-resolving model," Nature Climate Change, Nature, vol. 12(2), pages 179-186, February.
    8. Amanda E. Bates & Brian Helmuth & Michael T. Burrows & Murray I. Duncan & Joaquim Garrabou & Tamar Guy-Haim & Fernando Lima & Ana M. Queiros & Rui Seabra & Robert Marsh & Jonathan Belmaker & Nathaniel, 2018. "Biologists ignore ocean weather at their peril," Nature, Nature, vol. 560(7718), pages 299-301, August.
    9. Terry P. Hughes & James T. Kerry & Andrew H. Baird & Sean R. Connolly & Andreas Dietzel & C. Mark Eakin & Scott F. Heron & Andrew S. Hoey & Mia O. Hoogenboom & Gang Liu & Michael J. McWilliam & Rachel, 2018. "Global warming transforms coral reef assemblages," Nature, Nature, vol. 556(7702), pages 492-496, April.
    10. Guancheng Li & Lijing Cheng & Jiang Zhu & Kevin E. Trenberth & Michael E. Mann & John P. Abraham, 2020. "Increasing ocean stratification over the past half-century," Nature Climate Change, Nature, vol. 10(12), pages 1116-1123, December.
    11. Andréa G. Grottoli & Lisa J. Rodrigues & James E. Palardy, 2006. "Heterotrophic plasticity and resilience in bleached corals," Nature, Nature, vol. 440(7088), pages 1186-1189, April.
    12. Aryan Safaie & Nyssa J. Silbiger & Timothy R. McClanahan & Geno Pawlak & Daniel J. Barshis & James L. Hench & Justin S. Rogers & Gareth J. Williams & Kristen A. Davis, 2018. "Author Correction: High frequency temperature variability reduces the risk of coral bleaching," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liam Lachs & Simon D. Donner & Peter J. Mumby & John C. Bythell & Adriana Humanes & Holly K. East & James R. Guest, 2023. "Emergent increase in coral thermal tolerance reduces mass bleaching under climate change," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. K. M. Quigley & M. J. H. Oppen, 2022. "Predictive models for the selection of thermally tolerant corals based on offspring survival," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Friedrich A. Burger & Jens Terhaar & Thomas L. Frölicher, 2022. "Compound marine heatwaves and ocean acidity extremes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Alexandre Mignot & Karina Schuckmann & Peter Landschützer & Florent Gasparin & Simon Gennip & Coralie Perruche & Julien Lamouroux & Tristan Amm, 2022. "Decrease in air-sea CO2 fluxes caused by persistent marine heatwaves," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Ying Zhang & Yan Du & Ming Feng & Alistair J. Hobday, 2023. "Vertical structures of marine heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Shannon G. Klein & Cassandra Roch & Carlos M. Duarte, 2024. "Systematic review of the uncertainty of coral reef futures under climate change," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Eric J. Armstrong & Julie Lê-Hoang & Quentin Carradec & Jean-Marc Aury & Benjamin Noel & Benjamin C. C. Hume & Christian R. Voolstra & Julie Poulain & Caroline Belser & David A. Paz-García & Corinne C, 2023. "Host transcriptomic plasticity and photosymbiotic fidelity underpin Pocillopora acclimatization across thermal regimes in the Pacific Ocean," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Lewis A. Jones & Philip D. Mannion & Alexander Farnsworth & Fran Bragg & Daniel J. Lunt, 2022. "Climatic and tectonic drivers shaped the tropical distribution of coral reefs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Oguz Turkozan & Vasiliki Almpanidou & Can Yılmaz & Antonios D. Mazaris, 2021. "Extreme thermal conditions in sea turtle nests jeopardize reproductive output," Climatic Change, Springer, vol. 167(3), pages 1-16, August.
    10. Guillem Chust & Ernesto Villarino & Matthew McLean & Nova Mieszkowska & Lisandro Benedetti-Cecchi & Fabio Bulleri & Chiara Ravaglioli & Angel Borja & Iñigo Muxika & José A. Fernandes-Salvador & Leire , 2024. "Cross-basin and cross-taxa patterns of marine community tropicalization and deborealization in warming European seas," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Ce Bian & Zhao Jing & Hong Wang & Lixin Wu & Zhaohui Chen & Bolan Gan & Haiyuan Yang, 2023. "Oceanic mesoscale eddies as crucial drivers of global marine heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Trevor H. Booth & Paul R. Muir, 2020. "Climate change impacts on Australia's eucalypt and coral species: Comparing and sharing knowledge across disciplines," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(5), September.
    13. Dillon J. Amaya & Michael G. Jacox & Michael A. Alexander & James D. Scott & Clara Deser & Antonietta Capotondi & Adam S. Phillips, 2023. "Bottom marine heatwaves along the continental shelves of North America," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Thomas W. Davies & Oren Levy & Svenja Tidau & Laura Fernandes Barros Marangoni & Joerg Wiedenmann & Cecilia D’Angelo & Tim Smyth, 2023. "Global disruption of coral broadcast spawning associated with artificial light at night," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    15. Jun Ge & Qi Liu & Beilei Zan & Zhiqiang Lin & Sha Lu & Bo Qiu & Weidong Guo, 2022. "Deforestation intensifies daily temperature variability in the northern extratropics," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Lina M. Rasmusson & Aekkaraj Nualla-ong & Tarawit Wutiruk & Mats Björk & Martin Gullström & Pimchanok Buapet, 2021. "Sensitivity of Photosynthesis to Warming in Two Similar Species of the Aquatic Angiosperm Ruppia from Tropical and Temperate Habitats," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    17. Carlo Fezzi & Mauro Derek J. Ford & Kirsten L.L. Oleson, 2022. "The economic value of coral reefs: climate change impacts and spatial targeting of restoration measures," DEM Working Papers 2022/5, Department of Economics and Management.
    18. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    19. Alexandre C. Siqueira & Wolfgang Kiessling & David R. Bellwood, 2022. "Fast-growing species shape the evolution of reef corals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Guy Jackson, 2023. "Environmental subjectivities and experiences of climate extreme-driven loss and damage in northern Australia," Climatic Change, Springer, vol. 176(7), pages 1-21, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35550-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.