IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v500y2025ics0304380024002990.html
   My bibliography  Save this article

Mountain pine beetle spread in forests with varying host resistance

Author

Listed:
  • Brush, Micah
  • Lewis, Mark A.

Abstract

In the last few decades, mountain pine beetle (MPB) have spread into novel regions in Canada. An important aspect seldom captured in models of MPB spread is host resistance. Lodgepole pine, the predominant host of MPB, varies in resistance across the landscape. There is evidence for a genetic component of resistance, as well as evidence that hosts in areas where MPB has not been present historically are at risk of increased susceptibility. In addition to the spatially varying resistance of the primary host species, the eastward spread of MPB has brought them into jack pine forests. Host resistance in jack pine remains uncertain, but experiments indicate jack pine could be a suitable host. We develop a model of pine beetle spread that links pine beetle population dynamics and forest structure and resistance. We find that beetle outbreaks in the model are characterized by large transient outbreaks that move through the forest. We show how the speed of these outbreaks changes with host resistance and find that biologically plausible values for host resistance are able to stop the wave from advancing. We also find that near the threshold of resistance where the wave is able to advance, small changes in host resistance dramatically decrease the severity of the outbreak. These results indicate that planting trees selected for higher MPB resistance on the landscape may be able to slow or even stop the local spread of MPB. In terms of further eastward spread, our results indicate future outbreaks may move more quickly and be more severe if novel lodgepole pine hosts are indeed more susceptible to beetle attacks, although more research is needed into the susceptibility of jack pine.

Suggested Citation

  • Brush, Micah & Lewis, Mark A., 2025. "Mountain pine beetle spread in forests with varying host resistance," Ecological Modelling, Elsevier, vol. 500(C).
  • Handle: RePEc:eee:ecomod:v:500:y:2025:i:c:s0304380024002990
    DOI: 10.1016/j.ecolmodel.2024.110911
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024002990
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110911?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. A. Kurz & C. C. Dymond & G. Stinson & G. J. Rampley & E. T. Neilson & A. L. Carroll & T. Ebata & L. Safranyik, 2008. "Mountain pine beetle and forest carbon feedback to climate change," Nature, Nature, vol. 452(7190), pages 987-990, April.
    2. Srivastava, Vivek & Carroll, Allan L., 2023. "Dynamic distribution modelling using a native invasive species, the mountain pine beetle," Ecological Modelling, Elsevier, vol. 482(C).
    3. Powell, James A. & Bentz, Barbara J., 2014. "Phenology and density-dependent dispersal predict patterns of mountain pine beetle (Dendroctonus ponderosae) impact," Ecological Modelling, Elsevier, vol. 273(C), pages 173-185.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian Petersen & Diana Stuart, 2014. "Explanations of a Changing Landscape: A Critical Examination of the British Columbia Bark Beetle Epidemic," Environment and Planning A, , vol. 46(3), pages 598-613, March.
    2. Metsaranta, J.M. & Kurz, W.A., 2012. "Inter-annual variability of ecosystem production in boreal jack pine forests (1975–2004) estimated from tree-ring data using CBM-CFS3," Ecological Modelling, Elsevier, vol. 224(1), pages 111-123.
    3. Fahse, Lorenz & Heurich, Marco, 2011. "Simulation and analysis of outbreaks of bark beetle infestations and their management at the stand level," Ecological Modelling, Elsevier, vol. 222(11), pages 1833-1846.
    4. Coops, Nicholas C. & Waring, Richard H., 2011. "Estimating the vulnerability of fifteen tree species under changing climate in Northwest North America," Ecological Modelling, Elsevier, vol. 222(13), pages 2119-2129.
    5. Xie, Yalin & Lei, Xiangdong & Shi, Jingning, 2020. "Impacts of climate change on biological rotation of Larix olgensis plantations for timber production and carbon storage in northeast China using the 3-PGmix model," Ecological Modelling, Elsevier, vol. 435(C).
    6. Sohngen, Brent & Tian, Xiaohui, 2016. "Global climate change impacts on forests and markets," Forest Policy and Economics, Elsevier, vol. 72(C), pages 18-26.
    7. Erickson, Adam & Nitschke, Craig & Coops, Nicholas & Cumming, Steven & Stenhouse, Gordon, 2015. "Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada," Ecological Modelling, Elsevier, vol. 313(C), pages 94-102.
    8. Imtiaz Rangwala & James Miller, 2012. "Climate change in mountains: a review of elevation-dependent warming and its possible causes," Climatic Change, Springer, vol. 114(3), pages 527-547, October.
    9. Vladislav Soukhovolsky & Anton Kovalev & Yulia Ivanova & Olga Tarasova, 2023. "Autoregression, First Order Phase Transition, and Stochastic Resonance: A Comparison of Three Models for Forest Insect Outbreaks," Mathematics, MDPI, vol. 11(19), pages 1-19, October.
    10. de Godoy, Isabelle Bueno Silva & McGrane-Corrigan, Blake & Mason, Oliver & Moral, Rafael de Andrade & Godoy, Wesley Augusto Conde, 2023. "Plant-host shift, spatial persistence, and the viability of an invasive insect population," Ecological Modelling, Elsevier, vol. 475(C).
    11. Anna Jönsson & Susanne Harding & Paal Krokene & Holger Lange & Åke Lindelöw & Bjørn Økland & Hans Ravn & Leif Schroeder, 2011. "Modelling the potential impact of global warming on Ips typographus voltinism and reproductive diapause," Climatic Change, Springer, vol. 109(3), pages 695-718, December.
    12. Kopits, Elizabeth & Marten, Alex L. & Wolverton, Ann, 2013. "Moving Forward with Incorporating “Catastrophic” Climate Change into Policy Analysis," National Center for Environmental Economics-NCEE Working Papers 280911, United States Environmental Protection Agency (EPA).
    13. Bone, Christopher & Altaweel, Mark, 2014. "Modeling micro-scale ecological processes and emergent patterns of mountain pine beetle epidemics," Ecological Modelling, Elsevier, vol. 289(C), pages 45-58.
    14. Zhiyuan Xiang & Meifang Zhao & U. S. Ogbodo, 2020. "Accumulation of Urban Insect Pests in China: 50 Years’ Observations on Camphor Tree ( Cinnamomum camphora )," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    15. Jean-Sébastien Landry & Navin Ramankutty, 2015. "Carbon Cycling, Climate Regulation, and Disturbances in Canadian Forests: Scientific Principles for Management," Land, MDPI, vol. 4(1), pages 1-36, January.
    16. Chubaty, Alex M. & Roitberg, Bernard D. & Li, Chao, 2009. "A dynamic host selection model for mountain pine beetle, Dendroctonus ponderosae Hopkins," Ecological Modelling, Elsevier, vol. 220(9), pages 1241-1250.
    17. Bryan K. Mignone & Matthew D. Hurteau & Yihsu Chen & Brent Sohngen, 2009. "Carbon offsets, reversal risk and US climate policy," CAMA Working Papers 2009-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    18. Patrick J. Comer & Jon C. Hak & Marion S. Reid & Stephanie L. Auer & Keith A. Schulz & Healy H. Hamilton & Regan L. Smyth & Matthew M. Kling, 2019. "Habitat Climate Change Vulnerability Index Applied to Major Vegetation Types of the Western Interior United States," Land, MDPI, vol. 8(7), pages 1-27, July.
    19. Keskitalo, E. Carina H. & Pettersson, Maria & Ambjörnsson, Emmeline Laszlo & Davis, Emily Jane, 2016. "Agenda-setting and framing of policy solutions for forest pests in Canada and Sweden: Avoiding beetle outbreaks?," Forest Policy and Economics, Elsevier, vol. 65(C), pages 59-68.
    20. Patrick M A James & Dave W Coltman & Brent W Murray & Richard C Hamelin & Felix A H Sperling, 2011. "Spatial Genetic Structure of a Symbiotic Beetle-Fungal System: Toward Multi-Taxa Integrated Landscape Genetics," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-11, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:500:y:2025:i:c:s0304380024002990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.