IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v504y2025ics0304380025000766.html
   My bibliography  Save this article

Forest insect populations: Modeling of critical events as first- and second-order phase transitions

Author

Listed:
  • Soukhovolsky, V.G.
  • Tarasova, O.V.
  • Kovalev, A.V.
  • Ivanova, Yu.D.
  • Pavlushin, S.V.
  • Akhanaev, Y.B.
  • Martemyanov, V.V.

Abstract

In this article, methods are examined for modeling of critical events in forest insect populations by describing the processes of development of a population outbreak as analogs of first- and second-order phase transitions in physical systems. Measurable parameters characterizing the phase transition processes are proposed. For several forest insect species, first-order phase transition models were analyzed, which allowed to characterize risks of insect outbreaks. Second-order phase transitions were used to describe a spatial distribution of insects among trees (food items) on sample plots. These transitions characterize critical frequency of individuals per victim unit (tree); after attaining this frequency, insects colonize and start consuming all food items. It was also shown that a second-order phase transition model can describe the interaction of a baculovirus with spongy moth caterpillars. This model helped to estimate the latent period of the baculovirus's impact on the insect population and the time required for absolute mortality of caterpillars at different doses of the baculovirus. The proposed approach requires minimal data on the state of an ecosystem.

Suggested Citation

  • Soukhovolsky, V.G. & Tarasova, O.V. & Kovalev, A.V. & Ivanova, Yu.D. & Pavlushin, S.V. & Akhanaev, Y.B. & Martemyanov, V.V., 2025. "Forest insect populations: Modeling of critical events as first- and second-order phase transitions," Ecological Modelling, Elsevier, vol. 504(C).
  • Handle: RePEc:eee:ecomod:v:504:y:2025:i:c:s0304380025000766
    DOI: 10.1016/j.ecolmodel.2025.111090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380025000766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2025.111090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kautz, Markus & Schopf, Reinhard & Imron, Muhammad Ali, 2014. "Individual traits as drivers of spatial dispersal and infestation patterns in a host–bark beetle system," Ecological Modelling, Elsevier, vol. 273(C), pages 264-276.
    2. Srivastava, Vivek & Tai, Amberly R. & Robert, Jeanne A. & Carroll, Allan L., 2024. "A dynamic outbreak distribution model (DODM) for an irruptive folivore: The western spruce budworm," Ecological Modelling, Elsevier, vol. 492(C).
    3. Srivastava, Vivek & Carroll, Allan L., 2023. "Dynamic distribution modelling using a native invasive species, the mountain pine beetle," Ecological Modelling, Elsevier, vol. 482(C).
    4. Fahse, Lorenz & Heurich, Marco, 2011. "Simulation and analysis of outbreaks of bark beetle infestations and their management at the stand level," Ecological Modelling, Elsevier, vol. 222(11), pages 1833-1846.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Honkaniemi, Juha & Ojansuu, Risto & Kasanen, Risto & Heliövaara, Kari, 2018. "Interaction of disturbance agents on Norway spruce: A mechanistic model of bark beetle dynamics integrated in simulation framework WINDROT," Ecological Modelling, Elsevier, vol. 388(C), pages 45-60.
    2. Uchmański, Janusz, 2019. "Cyclic outbreaks of forest insects: A two-dimensional individual-based model," Theoretical Population Biology, Elsevier, vol. 128(C), pages 1-18.
    3. Ogris, Nikica & Ferlan, Mitja & Hauptman, Tine & Pavlin, Roman & Kavčič, Andreja & Jurc, Maja & de Groot, Maarten, 2020. "Sensitivity analysis, calibration and validation of a phenology model for Pityogenes chalcographus (CHAPY)," Ecological Modelling, Elsevier, vol. 430(C).
    4. Strohm, S. & Reid, M.L. & Tyson, R.C., 2016. "Impacts of management on Mountain Pine Beetle spread and damage: A process-rich model," Ecological Modelling, Elsevier, vol. 337(C), pages 241-252.
    5. Wildemeersch, Matthias & Franklin, Oskar & Seidl, Rupert & Rogelj, Joeri & Moorthy, Inian & Thurner, Stefan, 2019. "Modelling the multi-scaled nature of pest outbreaks," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    6. Malishev, Matthew & Kramer-Schadt, Stephanie, 2021. "Movement, models, and metabolism: Individual-based energy budget models as next-generation extensions for predicting animal movement outcomes across scales," Ecological Modelling, Elsevier, vol. 441(C).
    7. Malanson, George P. & DeRose, R. Justin & Bekker, Matthew F., 2019. "Individual variation and ecotypic niches in simulations of the impact of climatic volatility," Ecological Modelling, Elsevier, vol. 411(C).
    8. Brush, Micah & Lewis, Mark A., 2025. "Mountain pine beetle spread in forests with varying host resistance," Ecological Modelling, Elsevier, vol. 500(C).
    9. Srivastava, Vivek & Tai, Amberly R. & Robert, Jeanne A. & Carroll, Allan L., 2024. "A dynamic outbreak distribution model (DODM) for an irruptive folivore: The western spruce budworm," Ecological Modelling, Elsevier, vol. 492(C).
    10. Louis, Marceau & Toffin, Etienne & Gregoire, Jean-Claude & Deneubourg, Jean-Louis, 2016. "Modelling collective foraging in endemic bark beetle populations," Ecological Modelling, Elsevier, vol. 337(C), pages 188-199.
    11. Kautz, Markus & Schopf, Reinhard & Imron, Muhammad Ali, 2014. "Individual traits as drivers of spatial dispersal and infestation patterns in a host–bark beetle system," Ecological Modelling, Elsevier, vol. 273(C), pages 264-276.
    12. Perez, Liliana & Dragicevic, Suzana, 2012. "Landscape-level simulation of forest insect disturbance: Coupling swarm intelligent agents with GIS-based cellular automata model," Ecological Modelling, Elsevier, vol. 231(C), pages 53-64.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:504:y:2025:i:c:s0304380025000766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.