IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v496y2024ics0304380024002254.html
   My bibliography  Save this article

Dynamic modeling of lytic virus transmission among phytoplankton driven by nitrogen and phosphorus

Author

Listed:
  • Chen, Ming
  • Gao, Honghui
  • Zhang, Jimin

Abstract

Lytic viruses infect phytoplankton and cause their mass mortalities. A dynamic model is proposed to explore lytic virus transmission among phytoplankton. The ecological reproductive index for the survival ability of phytoplankton and the basic reproduction number for the spreading ability of lytic viruses are established by analyzing dynamical properties of the model. We estimate parameter values of the model from Maat and Brussaard’s experimental data and theoretically examine Maat and Brussaard’s hypotheses that lytic virus transmission is driven by nitrogen and phosphorus. Our studies show that lytic viruses cannot spread among phytoplankton in low nitrogen or low phosphorus aquatic environments. The numerical diagrams also suggest that the increase in nitrogen and phosphorus during the spread of lytic viruses does not always cause phytoplankton blooms.

Suggested Citation

  • Chen, Ming & Gao, Honghui & Zhang, Jimin, 2024. "Dynamic modeling of lytic virus transmission among phytoplankton driven by nitrogen and phosphorus," Ecological Modelling, Elsevier, vol. 496(C).
  • Handle: RePEc:eee:ecomod:v:496:y:2024:i:c:s0304380024002254
    DOI: 10.1016/j.ecolmodel.2024.110837
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024002254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110837?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Xin & Liu, Lidan & Liu, Meng & Fan, Meng, 2024. "Stochastic dynamics of coral reef system with stage-structure for crown-of-thorns starfish," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Peace, Angela, 2015. "Effects of light, nutrients, and food chain length on trophic efficiencies in simple stoichiometric aquatic food chain models," Ecological Modelling, Elsevier, vol. 312(C), pages 125-135.
    3. Jed A. Fuhrman, 1999. "Marine viruses and their biogeochemical and ecological effects," Nature, Nature, vol. 399(6736), pages 541-548, June.
    4. Wang, Hao & Garcia, Pablo Venegas & Ahmed, Shohel & Heggerud, Christopher M., 2022. "Mathematical comparison and empirical review of the Monod and Droop forms for resource-based population dynamics," Ecological Modelling, Elsevier, vol. 466(C).
    5. Jeff C. Ho & Anna M. Michalak & Nima Pahlevan, 2019. "Widespread global increase in intense lake phytoplankton blooms since the 1980s," Nature, Nature, vol. 574(7780), pages 667-670, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Qin & Rong Wang & Xiangdong Yang & Qinghui Zhang & Jianan Zheng, 2023. "Reconstruction and Trends of Total Phosphorus in Shallow Lakes in Eastern China in The Past Century," Sustainability, MDPI, vol. 15(14), pages 1-15, July.
    2. repec:ags:aaea22:335506 is not listed on IDEAS
    3. Keller, David P. & Hood, Raleigh R., 2011. "Modeling the seasonal autochthonous sources of dissolved organic carbon and nitrogen in the upper Chesapeake Bay," Ecological Modelling, Elsevier, vol. 222(5), pages 1139-1162.
    4. Alexander E. Cagle & Alona Armstrong & Giles Exley & Steven M. Grodsky & Jordan Macknick & John Sherwin & Rebecca R. Hernandez, 2020. "The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    5. Aparicio, Genoveva & Camacho, Maximo & Maté-Sánchez-Val, Mariluz, 2024. "Quantifying the impact: Are coastal areas impoverished by marine pollution?," Ecological Economics, Elsevier, vol. 221(C).
    6. Yuanmin Sun & Kunxian Tang & Hui Song & Degang Jiang & Shan Chen & Wulin Tu & Luchun Cai & Haiping Huang & Fei Zhang, 2022. "The Effect of Domestic Sewage Treatment on Islands Using Ecological Treatment Processes: A Case Study of Haimen Island, Fujian Province," IJERPH, MDPI, vol. 19(23), pages 1-12, November.
    7. Changchun Peng & Zhijun Xie & Xing Jin, 2024. "Using Ensemble Learning for Remote Sensing Inversion of Water Quality Parameters in Poyang Lake," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    8. Samvel Sarukhanian & Anna Maslovskaya & Christina Kuttler, 2023. "Three-Dimensional Cellular Automaton for Modeling of Self-Similar Evolution in Biofilm-Forming Bacterial Populations," Mathematics, MDPI, vol. 11(15), pages 1-18, July.
    9. Yang Huang & Hui Sun & Shuzhen Wei & Lanlan Cai & Liqin Liu & Yanan Jiang & Jiabao Xin & Zhenqin Chen & Yuqiong Que & Zhibo Kong & Tingting Li & Hai Yu & Jun Zhang & Ying Gu & Qingbing Zheng & Shaowei, 2023. "Structure and proposed DNA delivery mechanism of a marine roseophage," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Juan A. Bonachela, 2024. "Viral plasticity facilitates host diversity in challenging environments," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Konstantinos Metaxoglou & Aaron Smith, 2022. "Nutrient Pollution and US Agriculture: Causal Effects, Integrated Assessment, and Implications of Climate Change," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 297-341, National Bureau of Economic Research, Inc.
    12. Ratté-Fortin, Claudie & Chokmani, Karem & El Alem, Anas & Laurion, Isabelle, 2022. "A regional model to predict the occurrence of natural events: Application to phytoplankton blooms in continental waterbodies," Ecological Modelling, Elsevier, vol. 473(C).
    13. Liao, Tiancai, 2022. "The impact of plankton body size on phytoplankton-zooplankton dynamics in the absence and presence of stochastic environmental fluctuation," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    14. Yongguang Jiang & Peng Xiao & Gongliang Yu & Gaofei Song & Renhui Li, 2020. "Revealing Cryptic Changes of Cyanobacterial Community Structure in Two Eutrophic Lakes Using eDNA Sequencing," IJERPH, MDPI, vol. 17(17), pages 1-14, September.
    15. Kevin C. Rose & Britta Bierwagen & Scott D. Bridgham & Daren M. Carlisle & Charles P. Hawkins & N. LeRoy Poff & Jordan S. Read & Jason R. Rohr & Jasmine E. Saros & Craig E. Williamson, 2023. "Indicators of the effects of climate change on freshwater ecosystems," Climatic Change, Springer, vol. 176(3), pages 1-20, March.
    16. Yuxuan Du & Jed A. Fuhrman & Fengzhu Sun, 2023. "ViralCC retrieves complete viral genomes and virus-host pairs from metagenomic Hi-C data," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Jingtai Li & Yao Liu & Siying Xie & Min Li & Li Chen & Cuiling Wu & Dandan Yan & Zhaoqing Luan, 2022. "Landsat-Satellite-Based Analysis of Long-Term Temporal Spatial Dynamics of Cyanobacterial Blooms: A Case Study in Taihu Lake," Land, MDPI, vol. 11(12), pages 1-19, December.
    18. R. Iestyn Woolway & Yan Tong & Lian Feng & Gang Zhao & Dieu Anh Dinh & Haoran Shi & Yunlin Zhang & Kun Shi, 2024. "Multivariate extremes in lakes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Mengyao Wu & Hailong Yan & Songhan Fu & Xiaxian Han & Mengzhao Jia & Miaomiao Dou & Han Liu & Nicola Fohrer & Beata Messyasz & Yuying Li, 2025. "Seasonal Dynamics of Planktonic Algae in the Danjiangkou Reservoir: Nutrient Fluctuations and Ecological Implications," Sustainability, MDPI, vol. 17(2), pages 1-19, January.
    20. Krishna, Shubham & Peterson, Victoria & Listmann, Luisa & Hinners, Jana, 2024. "Interactive effects of viral lysis and warming in a coastal ocean identified from an idealized ecosystem model," Ecological Modelling, Elsevier, vol. 487(C).
    21. Irina Gabriela Cara & Denis Țopa & Ioan Puiu & Gerard Jităreanu, 2022. "Biochar a Promising Strategy for Pesticide-Contaminated Soils," Agriculture, MDPI, vol. 12(10), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:496:y:2024:i:c:s0304380024002254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.