IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v472y2022ics0304380022002058.html
   My bibliography  Save this article

Differentiating between distribution and suitable habitat in ecological niche models: A red spruce (Picea rubens) case study

Author

Listed:
  • Brown, Christian H.
  • Griscom, Heather P.

Abstract

Ecological niche modeling has become common practice amongst ecologists in the last two decades. The terms in the field of ecological niche modeling, such as ecological niche model, species distribution model, and habitat suitability model are often used interchangeably, although each term can have very different meanings depending on the context of the study. Without full understanding of model inputs and careful interpretation of model outputs, there is a possibility that the dimension of the ecological niche being predicted does not align with the modeling goals of the author. This study showcases an example which indicates that it is possible to intentionally model species distribution and habitat suitability separately. Red spruce (Picea rubens) distribution was modeled by collecting true-absence points in proximity to red spruce presence points. Red spruce suitable habitat was modeled by excluding true-absence points and only using pseudo-absence points along with presence points. Models which included presence-proximal true-absences had functionally greater discriminatory ability in map projections and were more sensitive to subtle environmental changes when compared to models which only included pseudo-absence points. Therefore, models which included true-absence points more closely approximated the current distribution of red spruce whereas models which only included pseudo-absences more closely approximated the potential distribution within the realized niche or suitable habitat of red spruce. This study demonstrates that distribution and suitable habitat can and should be modeled separately and emphasizes the necessity of carefully considering modeling objectives and methodologies when interpreting modeling outcomes.

Suggested Citation

  • Brown, Christian H. & Griscom, Heather P., 2022. "Differentiating between distribution and suitable habitat in ecological niche models: A red spruce (Picea rubens) case study," Ecological Modelling, Elsevier, vol. 472(C).
  • Handle: RePEc:eee:ecomod:v:472:y:2022:i:c:s0304380022002058
    DOI: 10.1016/j.ecolmodel.2022.110102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022002058
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bradley, Bethany A. & Olsson, Aaryn D. & Wang, Ophelia & Dickson, Brett G. & Pelech, Lori & Sesnie, Steven E. & Zachmann, Luke J., 2012. "Species detection vs. habitat suitability: Are we biasing habitat suitability models with remotely sensed data?," Ecological Modelling, Elsevier, vol. 244(C), pages 57-64.
    2. Melo-Merino, Sara M. & Reyes-Bonilla, Héctor & Lira-Noriega, Andrés, 2020. "Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence," Ecological Modelling, Elsevier, vol. 415(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincent Bian & Merrick Cai & Christopher L. Follett, 2023. "Understanding opposing predictions of Prochlorococcus in a changing climate," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Rodrigues, Lucas dos Santos & Daudt, Nicholas Winterle & Cardoso, Luis Gustavo & Kinas, Paul Gerhard & Conesa, David & Pennino, Maria Grazia, 2023. "Species distribution modelling in the Southwestern Atlantic Ocean: A systematic review and trends," Ecological Modelling, Elsevier, vol. 486(C).
    3. Varos Petrosyan & Fedor Osipov & Vladimir Bobrov & Natalia Dergunova & Andrey Omelchenko & Alexander Varshavskiy & Felix Danielyan & Marine Arakelyan, 2020. "Species Distribution Models and Niche Partitioning among Unisexual Darevskia dahli and Its Parental Bisexual ( D. portschinskii , D. mixta ) Rock Lizards in the Caucasus," Mathematics, MDPI, vol. 8(8), pages 1-21, August.
    4. Curtis Champion & James R. Lawson & Joanna Pardoe & Derrick O. Cruz & Ashley M. Fowler & Fabrice Jaine & Hayden T. Schilling & Melinda A. Coleman, 2023. "Multi-criteria analysis for rapid vulnerability assessment of marine species to climate change," Climatic Change, Springer, vol. 176(8), pages 1-20, August.
    5. Marianna V. P. Simões & Hanieh Saeedi & Marlon E. Cobos & Angelika Brandt, 2021. "Environmental matching reveals non-uniform range-shift patterns in benthic marine Crustacea," Climatic Change, Springer, vol. 168(3), pages 1-20, October.
    6. Azuaje-Rodríguez, Roxiris A. & Silva, Sofia Marques & Carlos, Caio J., 2022. "Not going with the flow: Ecological niche of a migratory seabird, the South American Tern Sterna hirundinacea," Ecological Modelling, Elsevier, vol. 463(C).
    7. Yanlin Tian & Zongming Wang & Dehua Mao & Lin Li & Mingyue Liu & Mingming Jia & Weidong Man & Chunyan Lu, 2019. "Remote Observation in Habitat Suitability Changes for Waterbirds in the West Songnen Plain, China," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    8. Muhammad Abdul Hakim Muhamad & Rozaimi Che Hasan & Najhan Md Said & Jillian Lean-Sim Ooi, 2021. "Seagrass habitat suitability model for Redang Marine Park using multibeam echosounder data: Testing different spatial resolutions and analysis window sizes," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-26, September.
    9. Barber-O'Malley, Betsy & Lassalle, Géraldine & Chust, Guillem & Diaz, Estibaliz & O'Malley, Andrew & Paradinas Blázquez, César & Pórtoles Marquina, Javier & Lambert, Patrick, 2022. "HyDiaD: A hybrid species distribution model combining dispersal, multi-habitat suitability, and population dynamics for diadromous species under climate change scenarios," Ecological Modelling, Elsevier, vol. 470(C).
    10. Yeeun Shin & Suyeon Kim & Se-Rin Park & Taewoo Yi & Chulgoo Kim & Sang-Woo Lee & Kyungjin An, 2022. "Identifying Key Environmental Factors for Paulownia coreana Habitats: Implementing National On-Site Survey and Machine Learning Algorithms," Land, MDPI, vol. 11(4), pages 1-16, April.
    11. Barbosa, Charles H.X.B. & Dias, Claudia M. & Pastore, Dayse H. & Silva, José C.R. & Costa, Anna R.C. & Santos, Isaac P. & Azevedo, Ramoni Z.S. & Figueira, Raquel M.A. & Fortunato, Humberto F.M., 2023. "Analysis of a mathematical model for golden mussels infestation," Ecological Modelling, Elsevier, vol. 486(C).
    12. Pecchi, Matteo & Marchi, Maurizio & Burton, Vanessa & Giannetti, Francesca & Moriondo, Marco & Bernetti, Iacopo & Bindi, Marco & Chirici, Gherardo, 2019. "Species distribution modelling to support forest management. A literature review," Ecological Modelling, Elsevier, vol. 411(C).
    13. Rotllan-Puig, Xavier & Traveset, Anna, 2021. "Determining the minimal background area for species distribution models: MinBAR package," Ecological Modelling, Elsevier, vol. 439(C).
    14. Pinto, Miguel & Albo-Puigserver, Marta & Bueno-Pardo, Juan & Monteiro, João Nuno & Teodósio, Maria Alexandra & Leitão, Francisco, 2023. "Eco-socio-economic vulnerability assessment of Portuguese fisheries to climate change," Ecological Economics, Elsevier, vol. 212(C).
    15. Chhaytle, Mohamad & Ouvrard, Régis & Poinot, Thierry & Mouysset, Lauriane, 2023. "Parameter-varying partial differential equation to model the global change impacts on wildlife populations," Ecological Modelling, Elsevier, vol. 486(C).
    16. Damiana Ravasi & Francesca Mangili & David Huber & Laura Azzimonti & Lukas Engeler & Nicola Vermes & Giacomo Del Rio & Valeria Guidi & Mauro Tonolla & Eleonora Flacio, 2022. "Risk-Based Mapping Tools for Surveillance and Control of the Invasive Mosquito Aedes albopictus in Switzerland," IJERPH, MDPI, vol. 19(6), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:472:y:2022:i:c:s0304380022002058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.