IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v468y2022ics0304380022000850.html
   My bibliography  Save this article

The emergence of imperfect philopatry and fidelity in spatially and temporally heterogeneous environments

Author

Listed:
  • Byer, Nathan W.
  • Reid, Brendan N.

Abstract

Repeatability in habitat use - often termed site fidelity - is widespread and ubiquitous. Often, used habitat areas may be inherited by offspring in a phenomenon called natal philopatry, leading to intergenerational repeatability in habitat preferences. Both fidelity and philopatry may represent strategies that could optimize fitness in spatially and temporally heterogeneous environments; however, the suite of ecological factors that encourage or discourage fidelity and philopatry remain poorly understood in most taxa. While turtles (Order Testudines) exhibit both fidelity and natal philopatry when selecting nesting areas, emerging evidence suggests that nest choice may be more plastic than previously thought. However, few studies to date have attempted to explore the behavioral choices that may produce deviations from nest site fidelity and philopatry. We used a spatially-explicit, individual-based model to explore how behavioral responses to a heterogeneous landscape can generate population-level patterns of fidelity and philopatry. We demonstrate that this model can dispersal patterns inferred from behavioral and genetic data from a Blanding's Turtle (Emydoidea blandingii) population in central Wisconsin. Reduced philopatry was associated with increasing error rates in habitat discrimination, and reduced site fidelity was associated with decreasing risk tolerance. Unpredictable spatial distributions of risk increased natal philopatry but decreased site fidelity overall, suggesting that strong natal imprinting may sometimes be associated with rapid shifts in habitat preferences in unpredictable environments. Associating risk exposure with increased adult or nest mortality led to increased nest site fidelity in both cases, but with relatively weak effects on natal philopatry. We also demonstrate the utility of this model for other landscapes and species by exploring a simplified seabird system. Our model holds promise for more detailed exploration of the ecological and evolutionary factors that may give rise to fidelity and philopatry.

Suggested Citation

  • Byer, Nathan W. & Reid, Brendan N., 2022. "The emergence of imperfect philopatry and fidelity in spatially and temporally heterogeneous environments," Ecological Modelling, Elsevier, vol. 468(C).
  • Handle: RePEc:eee:ecomod:v:468:y:2022:i:c:s0304380022000850
    DOI: 10.1016/j.ecolmodel.2022.109968
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022000850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.109968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ringelman, Kevin M., 2014. "Predator foraging behavior and patterns of avian nest success: What can we learn from an agent-based model?," Ecological Modelling, Elsevier, vol. 272(C), pages 141-149.
    2. Piou, Cyril & Berger, Uta & Grimm, Volker, 2009. "Proposing an information criterion for individual-based models developed in a pattern-oriented modelling framework," Ecological Modelling, Elsevier, vol. 220(17), pages 1957-1967.
    3. Hubertus J. E. Beaumont & Jenna Gallie & Christian Kost & Gayle C. Ferguson & Paul B. Rainey, 2009. "Experimental evolution of bet hedging," Nature, Nature, vol. 462(7269), pages 90-93, November.
    4. Semeniuk, C.A.D. & Musiani, M. & Hebblewhite, M. & Grindal, S. & Marceau, D.J., 2012. "Incorporating behavioral–ecological strategies in pattern-oriented modeling of caribou habitat use in a highly industrialized landscape," Ecological Modelling, Elsevier, vol. 243(C), pages 18-32.
    5. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    6. Wang, Magnus & Grimm, Volker, 2007. "Home range dynamics and population regulation: An individual-based model of the common shrew Sorex araneus," Ecological Modelling, Elsevier, vol. 205(3), pages 397-409.
    7. Volker Grimm & Steven F. Railsback & Christian E. Vincenot & Uta Berger & Cara Gallagher & Donald L. DeAngelis & Bruce Edmonds & Jiaqi Ge & Jarl Giske & Jürgen Groeneveld & Alice S.A. Johnston & Alex, 2020. "The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(2), pages 1-7.
    8. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malishev, Matthew & Kramer-Schadt, Stephanie, 2021. "Movement, models, and metabolism: Individual-based energy budget models as next-generation extensions for predicting animal movement outcomes across scales," Ecological Modelling, Elsevier, vol. 441(C).
    2. Carter, Neil & Levin, Simon & Barlow, Adam & Grimm, Volker, 2015. "Modeling tiger population and territory dynamics using an agent-based approach," Ecological Modelling, Elsevier, vol. 312(C), pages 347-362.
    3. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    4. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    5. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    6. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
    7. Watson, Joseph W & Boyd, Robin & Dutta, Ritabrata & Vasdekis, Georgios & Walker, Nicola D. & Roy, Shovonlal & Everitt, Richard & Hyder, Kieran & Sibly, Richard M, 2022. "Incorporating environmental variability in a spatially-explicit individual-based model of European sea bass✰," Ecological Modelling, Elsevier, vol. 466(C).
    8. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    9. Kjær, Lene J. & Schauber, Eric M., 2022. "The effect of landscape, transmission mode and social behavior on disease transmission: Simulating the transmission of chronic wasting disease in white-tailed deer (Odocoileus virginianus) populations," Ecological Modelling, Elsevier, vol. 472(C).
    10. Noeldeke, Beatrice & Winter, Etti & Ntawuhiganayo, Elisée Bahati, 2022. "Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda," Ecological Economics, Elsevier, vol. 200(C).
    11. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    12. Thurner, Stephanie D & Converse, Sarah J & Branch, Trevor A, 2021. "Modeling opportunistic exploitation: increased extinction risk when targeting more than one species," Ecological Modelling, Elsevier, vol. 454(C).
    13. Crouse, Kristin N. & Desai, Nisarg P. & Cassidy, Kira A. & Stahler, Erin E. & Lehman, Clarence L. & Wilson, Michael L., 2022. "Larger territories reduce mortality risk for chimpanzees, wolves, and agents: Multiple lines of evidence in a model validation framework," Ecological Modelling, Elsevier, vol. 471(C).
    14. Troost, Christian & Huber, Robert & Bell, Andrew R. & van Delden, Hedwig & Filatova, Tatiana & Le, Quang Bao & Lippe, Melvin & Niamir, Leila & Polhill, J. Gareth & Sun, Zhanli & Berger, Thomas, 2023. "How to keep it adequate: A protocol for ensuring validity in agent-based simulation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 159, pages 1-21.
    15. MacPherson, Brian & Scott, Ryan & Gras, Robin, 2023. "Using individual-based modelling to investigate a pluralistic explanation for the prevalence of sexual reproduction in animal species," Ecological Modelling, Elsevier, vol. 475(C).
    16. Medeiros-Sousa, Antônio Ralph & Laporta, Gabriel Zorello & Mucci, Luis Filipe & Marrelli, Mauro Toledo, 2022. "Epizootic dynamics of yellow fever in forest fragments: An agent-based model to explore the influence of vector and host parameters," Ecological Modelling, Elsevier, vol. 466(C).
    17. Jager, Henriette I. & DeAngelis, Donald L., 2018. "The confluences of ideas leading to, and the flow of ideas emerging from, individual-based modeling of riverine fishes," Ecological Modelling, Elsevier, vol. 384(C), pages 341-352.
    18. Liu, Chun & Bednarska, Agnieszka J. & Sibly, Richard M. & Murfitt, Roger C. & Edwards, Peter & Thorbek, Pernille, 2014. "Incorporating toxicokinetics into an individual-based model for more realistic pesticide exposure estimates: A case study of the wood mouse," Ecological Modelling, Elsevier, vol. 280(C), pages 30-39.
    19. Pirotta, Enrico & New, Leslie & Harwood, John & Lusseau, David, 2014. "Activities, motivations and disturbance: An agent-based model of bottlenose dolphin behavioral dynamics and interactions with tourism in Doubtful Sound, New Zealand," Ecological Modelling, Elsevier, vol. 282(C), pages 44-58.
    20. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Tomback, Diana F. & Lorenz, Teresa & Marceau, Danielle, 2017. "Energetic behavioural-strategy prioritization of Clark’s nutcrackers in whitebark pine communities: An agent-based modeling approach," Ecological Modelling, Elsevier, vol. 354(C), pages 123-139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:468:y:2022:i:c:s0304380022000850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.