IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v440y2021ics0304380020304592.html
   My bibliography  Save this article

Influences of traits and processes on productivity and functional composition in grasslands: A modeling study

Author

Listed:
  • Schmid, Julia S.
  • Huth, Andreas
  • Taubert, Franziska

Abstract

Grasslands are an important habitat for many plant species whose functional diversity and composition influences ecosystem functioning and services. Despite several field studies, still uncertainties remain about the interplay of species traits and ecosystem processes that lead to the functional diversity observed in grasslands. Here, we used an individual-based process-oriented model to simulate a biodiversity field experiment located in Central Europe. With the focus on plant functional types (PFT), the simulation model well reproduced vegetation attributes of grassland communities at different diversity levels (of up to four PFTs of grasses, small herbs, tall herbs and legumes). To understand how plant traits and competition between plants affects the functional composition of grasslands, we tested in a simulation study the impact of different ecosystem processes and detected sensitive plant traits. According to our model results, competition for space affects community productivity stronger than competition for light. While some traits increase and strengthen the growth of plants, other functional traits make plants stronger through advantages in demographic processes. Our model-based findings can be substantiated by several independent field studies in terms of relative yield, plant density, plant biomass and life span of plant functional types. The methods and analyses shown here represent a promising step for the development of grassland models to investigate the complex structures and dynamics of temperate grasslands in complement to field studies.

Suggested Citation

  • Schmid, Julia S. & Huth, Andreas & Taubert, Franziska, 2021. "Influences of traits and processes on productivity and functional composition in grasslands: A modeling study," Ecological Modelling, Elsevier, vol. 440(C).
  • Handle: RePEc:eee:ecomod:v:440:y:2021:i:c:s0304380020304592
    DOI: 10.1016/j.ecolmodel.2020.109395
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020304592
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moulin, Thibault & Perasso, Antoine & Gillet, François, 2018. "Modelling vegetation dynamics in managed grasslands: Responses to drivers depend on species richness," Ecological Modelling, Elsevier, vol. 374(C), pages 22-36.
    2. Taubert, Franziska & Frank, Karin & Huth, Andreas, 2012. "A review of grassland models in the biofuel context," Ecological Modelling, Elsevier, vol. 245(C), pages 84-93.
    3. Smit, H.J. & Metzger, M.J. & Ewert, F., 2008. "Spatial distribution of grassland productivity and land use in Europe," Agricultural Systems, Elsevier, vol. 98(3), pages 208-219, October.
    4. Duru, M. & Adam, M. & Cruz, P. & Martin, G. & Ansquer, P. & Ducourtieux, C. & Jouany, C. & Theau, J.P. & Viegas, J., 2009. "Modelling above-ground herbage mass for a wide range of grassland community types," Ecological Modelling, Elsevier, vol. 220(2), pages 209-225.
    5. Sergei Schaub & Robert Finger & Florian Leiber & Stefan Probst & Michael Kreuzer & Alexandra Weigelt & Nina Buchmann & Michael Scherer-Lorenzen, 2020. "Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    6. Yongfan Wang & Marc W. Cadotte & Yuxin Chen & Lauchlan H. Fraser & Yuhua Zhang & Fengmin Huang & Shan Luo & Nayun Shi & Michel Loreau, 2019. "Global evidence of positive biodiversity effects on spatial ecosystem stability in natural grasslands," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hetzer, Jessica & Huth, Andreas & Taubert, Franziska, 2021. "The importance of plant trait variability in grasslands: a modelling study," Ecological Modelling, Elsevier, vol. 453(C).
    2. Gloy, Josias & Herzschuh, Ulrike & Kruse, Stefan, 2023. "Evolutionary adaptation of trees and modelled future larch forest extent in Siberia," Ecological Modelling, Elsevier, vol. 478(C).
    3. Gintarė Šidlauskaitė & Vilma Kemešytė & Monika Toleikienė & Žydrė Kadžiulienė, 2022. "Plant Diversity, Functional Group Composition and Legumes Effects versus Fertilisation on the Yield and Forage Quality," Sustainability, MDPI, vol. 14(3), pages 1-14, January.
    4. Wirth, Stephen Björn & Taubert, Franziska & Tietjen, Britta & Müller, Christoph & Rolinski, Susanne, 2021. "Do details matter? Disentangling the processes related to plant species interactions in two grassland models of different complexity," Ecological Modelling, Elsevier, vol. 460(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moulin, Thibault & Perasso, Antoine & Calanca, Pierluigi & Gillet, François, 2021. "DynaGraM: A process-based model to simulate multi-species plant community dynamics in managed grasslands," Ecological Modelling, Elsevier, vol. 439(C).
    2. Hetzer, Jessica & Huth, Andreas & Taubert, Franziska, 2021. "The importance of plant trait variability in grasslands: a modelling study," Ecological Modelling, Elsevier, vol. 453(C).
    3. Moulin, Thibault & Perasso, Antoine & Gillet, François, 2018. "Modelling vegetation dynamics in managed grasslands: Responses to drivers depend on species richness," Ecological Modelling, Elsevier, vol. 374(C), pages 22-36.
    4. Wirth, Stephen Björn & Taubert, Franziska & Tietjen, Britta & Müller, Christoph & Rolinski, Susanne, 2021. "Do details matter? Disentangling the processes related to plant species interactions in two grassland models of different complexity," Ecological Modelling, Elsevier, vol. 460(C).
    5. Lina Peng & Yan Hu & Jiyun Li & Qingyun Du, 2017. "An Improved Evaluation Scheme for Performing Quality Assessments of Unconsolidated Cultivated Land," Sustainability, MDPI, vol. 9(8), pages 1-21, July.
    6. Taubert, Franziska & Frank, Karin & Huth, Andreas, 2012. "A review of grassland models in the biofuel context," Ecological Modelling, Elsevier, vol. 245(C), pages 84-93.
    7. Yanhui Chen & Guosheng Li & Linlin Cui & Lijuan Li & Lei He & Peipei Ma, 2022. "The Effects of Tidal Flat Reclamation on the Stability of the Coastal Area in the Jiangsu Province, China, from the Perspective of Landscape Structure," Land, MDPI, vol. 11(3), pages 1-20, March.
    8. Myrgiotis, Vasileios & Blei, Emanuel & Clement, Rob & Jones, Stephanie K. & Keane, Ben & Lee, Mark A. & Levy, Peter E. & Rees, Robert M. & Skiba, Ute M. & Smallman, Thomas Luke & Toet, Sylvia & Willia, 2020. "A model-data fusion approach to analyse carbon dynamics in managed grasslands," Agricultural Systems, Elsevier, vol. 184(C).
    9. Martin Weih & Alison J. Karley & Adrian C. Newton & Lars P. Kiær & Christoph Scherber & Diego Rubiales & Eveline Adam & James Ajal & Jana Brandmeier & Silvia Pappagallo & Angel Villegas-Fernández & Mo, 2021. "Grain Yield Stability of Cereal-Legume Intercrops Is Greater Than Sole Crops in More Productive Conditions," Agriculture, MDPI, vol. 11(3), pages 1-18, March.
    10. Martin, G. & Duru, M. & Schellberg, J. & Ewert, F., 2012. "Simulations of plant productivity are affected by modelling approaches of farm management," Agricultural Systems, Elsevier, vol. 109(C), pages 25-34.
    11. Marion Sautier & Roger Martin-Clouaire & Robert Faivre & Michel Duru, 2013. "Assessing climatic exposure of grassland-based livestock systems with seasonal-scale indicators," Climatic Change, Springer, vol. 120(1), pages 341-355, September.
    12. Pedro Daleo & Juan Alberti & Enrique J. Chaneton & Oscar Iribarne & Pedro M. Tognetti & Jonathan D. Bakker & Elizabeth T. Borer & Martín Bruschetti & Andrew S. MacDougall & Jesús Pascual & Mahesh Sank, 2023. "Environmental heterogeneity modulates the effect of plant diversity on the spatial variability of grassland biomass," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Tuohy, P. & O’ Loughlin, J. & Peyton, D. & Fenton, O., 2018. "The performance and behavior of land drainage systems and their impact on field scale hydrology in an increasingly volatile climate," Agricultural Water Management, Elsevier, vol. 210(C), pages 96-107.
    14. Davis, Natalie & Jarvis, Andrew & Polhill, J. Gareth, 2022. "Co-evolution of network structure and consumer inequality in a spatially explicit model of energetic resource acquisition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    15. Hermans, C.M.L. & Geijzendorffer, I.R. & Ewert, F. & Metzger, M.J. & Vereijken, P.H. & Woltjer, G.B. & Verhagen, A., 2010. "Exploring the future of European crop production in a liberalised market, with specific consideration of climate change and the regional competitiveness," Ecological Modelling, Elsevier, vol. 221(18), pages 2177-2187.
    16. Dardonville, Manon & Bockstaller, Christian & Villerd, Jean & Therond, Olivier, 2022. "Resilience of agricultural systems: biodiversity-based systems are stable, while intensified ones are resistant and high-yielding," Agricultural Systems, Elsevier, vol. 197(C).
    17. Vroege, Willemijn & Dalhaus, Tobias & Finger, Robert, 2019. "Index insurances for grasslands – A review for Europe and North-America," Agricultural Systems, Elsevier, vol. 168(C), pages 101-111.
    18. Celette, Florian & Ripoche, Aude & Gary, Christian, 2010. "WaLIS--A simple model to simulate water partitioning in a crop association: The example of an intercropped vineyard," Agricultural Water Management, Elsevier, vol. 97(11), pages 1749-1759, November.
    19. Richard Orozco & María Rosa Mosquera-Losada & Javier Rodriguez & Muluken Elias Adamseged & Philipp Grundmann, 2021. "Supportive Business Environments to Develop Grass Bioeconomy in Europe," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    20. Sandra Dullau & Knut Rydgren & Anita Kirmer & Urs Georg Jäger & Maren Helen Meyer & Sabine Tischew, 2021. "The Dessau Grassland Experiment—Impact of Fertilization on Forage Quality and Species Assembly in a Species-Rich Alluvial Meadow," Agriculture, MDPI, vol. 11(4), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:440:y:2021:i:c:s0304380020304592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.