IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v430y2020ics0304380020301915.html
   My bibliography  Save this article

Combining the strengths of agent-based modelling and network statistics to understand animal movement and interactions with resources: example from within-patch foraging decisions of bumblebees

Author

Listed:
  • Chudzinska, Magda
  • Dupont, Yoko L.
  • Nabe-Nielsen, Jacob
  • Maia, Kate P.
  • Henriksen, Marie V.
  • Rasmussen, Claus
  • Kissling, W. Daniel
  • Hagen, Melanie
  • Trøjelsgaard, Kristian

Abstract

Understanding interactions between individual animals and their resources is fundamental to ecology. Agent-Based Models (ABMs) offer an opportunity to study how individuals move given the spatial distribution and characteristics of their resources. When contrasted with empirical individual-resource network data, ABMs can be a powerful method to detect the processes behind observed movement patterns, as they allow for a complete and quantitative analysis of the agent-to-environment relationships. Here we use the small-scale, within-patch movement of bumblebees (Bombus pascuorum) as a case study to demonstrate how ABMs can be combined with network statistics to provide a deeper understanding of the mechanisms behind the interactions between individuals and their resources.

Suggested Citation

  • Chudzinska, Magda & Dupont, Yoko L. & Nabe-Nielsen, Jacob & Maia, Kate P. & Henriksen, Marie V. & Rasmussen, Claus & Kissling, W. Daniel & Hagen, Melanie & Trøjelsgaard, Kristian, 2020. "Combining the strengths of agent-based modelling and network statistics to understand animal movement and interactions with resources: example from within-patch foraging decisions of bumblebees," Ecological Modelling, Elsevier, vol. 430(C).
  • Handle: RePEc:eee:ecomod:v:430:y:2020:i:c:s0304380020301915
    DOI: 10.1016/j.ecolmodel.2020.109119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020301915
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Becher, M.A. & Grimm, V. & Knapp, J. & Horn, J. & Twiston-Davies, G. & Osborne, J.L., 2016. "BEESCOUT: A model of bee scouting behaviour and a software tool for characterizing nectar/pollen landscapes for BEEHAVE," Ecological Modelling, Elsevier, vol. 340(C), pages 126-133.
    2. Kramer-Schadt, Stephanie & Revilla, Eloy & Wiegand, Thorsten & Grimm, Volker, 2007. "Patterns for parameters in simulation models," Ecological Modelling, Elsevier, vol. 204(3), pages 553-556.
    3. Kazuharu Ohashi & James D. Thomson & Daniel D'Souza, 2007. "Trapline foraging by bumble bees: IV. Optimization of route geometry in the absence of competition," Behavioral Ecology, International Society for Behavioral Ecology, vol. 18(1), pages 1-11, January.
    4. Mathilde Baude & William E. Kunin & Nigel D. Boatman & Simon Conyers & Nancy Davies & Mark A. K. Gillespie & R. Daniel Morton & Simon M. Smart & Jane Memmott, 2016. "Historical nectar assessment reveals the fall and rise of floral resources in Britain," Nature, Nature, vol. 530(7588), pages 85-88, February.
    5. Simon G. Potts & Vera Imperatriz-Fonseca & Hien T. Ngo & Marcelo A. Aizen & Jacobus C. Biesmeijer & Thomas D. Breeze & Lynn V. Dicks & Lucas A. Garibaldi & Rosemary Hill & Josef Settele & Adam J. Vanb, 2016. "Safeguarding pollinators and their values to human well-being," Nature, Nature, vol. 540(7632), pages 220-229, December.
    6. Frank, Béatrice M. & Baret, Philippe V., 2013. "Simulating brown trout demogenetics in a river/nursery brook system: The individual-based model DemGenTrout," Ecological Modelling, Elsevier, vol. 248(C), pages 184-202.
    7. Boult, Victoria L. & Quaife, Tristan & Fishlock, Vicki & Moss, Cynthia J. & Lee, Phyllis C. & Sibly, Richard M., 2018. "Individual-based modelling of elephant population dynamics using remote sensing to estimate food availability," Ecological Modelling, Elsevier, vol. 387(C), pages 187-195.
    8. Hodges, James S. & Reich, Brian J., 2010. "Adding Spatially-Correlated Errors Can Mess Up the Fixed Effect You Love," The American Statistician, American Statistical Association, vol. 64(4), pages 325-334.
    9. Jan C. Thiele & Winfried Kurth & Volker Grimm, 2014. "Facilitating Parameter Estimation and Sensitivity Analysis of Agent-Based Models: A Cookbook Using NetLogo and 'R'," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 17(3), pages 1-11.
    10. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evans, Luke C. & Sibly, Richard M. & Thorbek, Pernille & Sims, Ian & Oliver, Tom H. & Walters, Richard J., 2019. "Quantifying the effectiveness of agri-environment schemes for a grassland butterfly using individual-based models," Ecological Modelling, Elsevier, vol. 411(C).
    2. Ayllón, Daniel & Railsback, Steven F. & Vincenzi, Simone & Groeneveld, Jürgen & Almodóvar, Ana & Grimm, Volker, 2016. "InSTREAM-Gen: Modelling eco-evolutionary dynamics of trout populations under anthropogenic environmental change," Ecological Modelling, Elsevier, vol. 326(C), pages 36-53.
    3. Chudzińska, Magda & Ayllón, Daniel & Madsen, Jesper & Nabe-Nielsen, Jacob, 2016. "Discriminating between possible foraging decisions using pattern-oriented modelling: The case of pink-footed geese in Mid-Norway during their spring migration," Ecological Modelling, Elsevier, vol. 320(C), pages 299-315.
    4. Chudzinska, Magda & Nabe-Nielsen, Jacob & Smout, Sophie & Aarts, Geert & Brasseur, Sophie & Graham, Isla & Thompson, Paul & McConnell, Bernie, 2021. "AgentSeal: Agent-based model describing movement of marine central-place foragers," Ecological Modelling, Elsevier, vol. 440(C).
    5. Neil, Emily & Madsen, Jens Koed & Carrella, Ernesto & Payette, Nicolas & Bailey, Richard, 2020. "Agent-based modelling as a tool for elephant poaching mitigation," Ecological Modelling, Elsevier, vol. 427(C).
    6. Planque, Benjamin & Aarflot, Johanna M. & Buttay, Lucie & Carroll, JoLynn & Fransner, Filippa & Hansen, Cecilie & Husson, Bérengère & Langangen, Øystein & Lindstrøm, Ulf & Pedersen, Torstein & Primice, 2022. "A standard protocol for describing the evaluation of ecological models," Ecological Modelling, Elsevier, vol. 471(C).
    7. Joanne Lee Picknoll & Pieter Poot & Michael Renton, 2021. "A New Approach to Inform Restoration and Management Decisions for Sustainable Apiculture," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
    8. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    9. Watson, Joseph W & Boyd, Robin & Dutta, Ritabrata & Vasdekis, Georgios & Walker, Nicola D. & Roy, Shovonlal & Everitt, Richard & Hyder, Kieran & Sibly, Richard M, 2022. "Incorporating environmental variability in a spatially-explicit individual-based model of European sea bass✰," Ecological Modelling, Elsevier, vol. 466(C).
    10. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    11. Becher, M.A. & Grimm, V. & Knapp, J. & Horn, J. & Twiston-Davies, G. & Osborne, J.L., 2016. "BEESCOUT: A model of bee scouting behaviour and a software tool for characterizing nectar/pollen landscapes for BEEHAVE," Ecological Modelling, Elsevier, vol. 340(C), pages 126-133.
    12. Santibañez, Fernanda & Joseph, Julien & Abramson, Guillermo & Kuperman, Marcelo N. & Laguna, María Fabiana & Garibaldi, Lucas A., 2022. "Designing crop pollination services: A spatially explicit agent-based model for real agricultural landscapes," Ecological Modelling, Elsevier, vol. 472(C).
    13. Troost, Christian & Huber, Robert & Bell, Andrew R. & van Delden, Hedwig & Filatova, Tatiana & Le, Quang Bao & Lippe, Melvin & Niamir, Leila & Polhill, J. Gareth & Sun, Zhanli & Berger, Thomas, 2023. "How to keep it adequate: A protocol for ensuring validity in agent-based simulation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 159, pages 1-21.
    14. Medeiros-Sousa, Antônio Ralph & Laporta, Gabriel Zorello & Mucci, Luis Filipe & Marrelli, Mauro Toledo, 2022. "Epizootic dynamics of yellow fever in forest fragments: An agent-based model to explore the influence of vector and host parameters," Ecological Modelling, Elsevier, vol. 466(C).
    15. Brinkmann, Katja & Kübler, Daniel & Liehr, Stefan & Buerkert, Andreas, 2021. "Agent-based modelling of the social-ecological nature of poverty traps in southwestern Madagascar," Agricultural Systems, Elsevier, vol. 190(C).
    16. Halsey, Samniqueka J. & Miller, James R., 2018. "A spatial agent-based model of the disease vector Ixodes scapularis to explore host-tick associations," Ecological Modelling, Elsevier, vol. 387(C), pages 96-106.
    17. Carturan, Bruno S. & Siewe, Nourridine & Cobbold, Christina A. & Tyson, Rebecca C., 2023. "Bumble bee pollination and the wildflower/crop trade-off: When do wildflower enhancements improve crop yield?," Ecological Modelling, Elsevier, vol. 484(C).
    18. Lise Ropars & Isabelle Dajoz & Colin Fontaine & Audrey Muratet & Benoît Geslin, 2019. "Wild pollinator activity negatively related to honey bee colony densities in urban context," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-16, September.
    19. Grant, Tyler J. & Parry, Hazel R. & Zalucki, Myron P. & Bradbury, Steven P., 2018. "Predicting monarch butterfly (Danaus plexippus) movement and egg-laying with a spatially-explicit agent-based model: The role of monarch perceptual range and spatial memory," Ecological Modelling, Elsevier, vol. 374(C), pages 37-50.
    20. Bauduin, Sarah & McIntire, Eliot & St-Laurent, Martin-Hugues & Cumming, Steve, 2016. "Overcoming challenges of sparse telemetry data to estimate caribou movement," Ecological Modelling, Elsevier, vol. 335(C), pages 24-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:430:y:2020:i:c:s0304380020301915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.