IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v386y2018icp71-82.html
   My bibliography  Save this article

Dynamic modeling of organic carbon fates in lake ecosystems

Author

Listed:
  • McCullough, Ian M.
  • Dugan, Hilary A.
  • Farrell, Kaitlin J.
  • Morales-Williams, Ana M.
  • Ouyang, Zutao
  • Roberts, Derek
  • Scordo, Facundo
  • Bartlett, Sarah L.
  • Burke, Samantha M.
  • Doubek, Jonathan P.
  • Krivak-Tetley, Flora E.
  • Skaff, Nicholas K.
  • Summers, Jamie C.
  • Weathers, Kathleen C.
  • Hanson, Paul C.

Abstract

Lakes are active processors of organic carbon (OC) and play important roles in landscape and global carbon cycling. Allochthonous OC loads from the landscape, along with autochthonous OC loads from primary production, are mineralized in lakes, buried in lake sediments, and exported via surface or groundwater outflows. Although these processes provide a basis for a conceptual understanding of lake OC budgets, few studies have integrated these fluxes under a dynamic modeling framework to examine their interactions and relative magnitudes. We developed a simple, dynamic mass balance model for OC, and applied the model to a set of five lakes. We examined the relative magnitudes of OC fluxes and found that long-term (>10 year) lake OC dynamics were predominantly driven by allochthonous loads in four of the five lakes, underscoring the importance of terrestrially-derived OC in northern lake ecosystems. Our model highlighted seasonal patterns in lake OC budgets, with increasing water temperatures and lake productivity throughout the growing season corresponding to a transition from burial- to respiration-dominated OC fates. Ratios of respiration to burial, however, were also mediated by the source (autochthonous vs. allochthonous) of total OC loads. Autochthonous OC is more readily respired and may therefore proportionally reduce burial under a warming climate, but allochthonous OC may increase burial due to changes in precipitation. The ratios of autochthonous to allochthonous inputs and respiration to burial demonstrate the importance of dynamic models for examining both the seasonal and inter-annual roles of lakes in landscape and global carbon cycling, particularly in a global change context. Finally, we highlighted critical data needs, which include surface water DOC observations in paired tributary and lake systems, measurements of OC burial rates, groundwater input volume and DOC, and budgets of particulate OC.

Suggested Citation

  • McCullough, Ian M. & Dugan, Hilary A. & Farrell, Kaitlin J. & Morales-Williams, Ana M. & Ouyang, Zutao & Roberts, Derek & Scordo, Facundo & Bartlett, Sarah L. & Burke, Samantha M. & Doubek, Jonathan P, 2018. "Dynamic modeling of organic carbon fates in lake ecosystems," Ecological Modelling, Elsevier, vol. 386(C), pages 71-82.
  • Handle: RePEc:eee:ecomod:v:386:y:2018:i:c:p:71-82
    DOI: 10.1016/j.ecolmodel.2018.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018302783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.08.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. M. Walter Anthony & S. A. Zimov & G. Grosse & M. C. Jones & P. M. Anthony & F. S. Chapin III & J. C. Finlay & M. C. Mack & S. Davydov & P. Frenzel & S. Frolking, 2014. "A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch," Nature, Nature, vol. 511(7510), pages 452-456, July.
    2. Soetaert, Karline & Petzoldt, Thomas, 2010. "Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i03).
    3. Peter A. Raymond & James E. Bauer, 2001. "Riverine export of aged terrestrial organic matter to the North Atlantic Ocean," Nature, Nature, vol. 409(6819), pages 497-500, January.
    4. Raquel Mendonça & Roger A. Müller & David Clow & Charles Verpoorter & Peter Raymond & Lars J. Tranvik & Sebastian Sobek, 2017. "Organic carbon burial in global lakes and reservoirs," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    5. Peter A. Raymond & Jens Hartmann & Ronny Lauerwald & Sebastian Sobek & Cory McDonald & Mark Hoover & David Butman & Robert Striegl & Emilio Mayorga & Christoph Humborg & Pirkko Kortelainen & Hans Dürr, 2013. "Global carbon dioxide emissions from inland waters," Nature, Nature, vol. 503(7476), pages 355-359, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dash, Siddhant & Borah, Smitom Swapna & Kalamdhad, Ajay S., 2020. "Study of the limnology of wetlands through a one-dimensional model for assessing the eutrophication levels induced by various pollution sources," Ecological Modelling, Elsevier, vol. 416(C).
    2. Dash, Siddhant & Kalamdhad, Ajay S., 2022. "Systematic bibliographic research on eutrophication-based ecological modelling of aquatic ecosystems through the lens of science mapping," Ecological Modelling, Elsevier, vol. 472(C).
    3. Akomeah, Eric & Lindenschmidt, Karl-Erich & Chapra, Steven C., 2019. "Comparison of aquatic ecosystem functioning between eutrophic and hypereutrophic cold-region river-lake systems," Ecological Modelling, Elsevier, vol. 393(C), pages 25-36.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, W. & O’Neill, E. & Moncaster, A. & Reiner, D. & Guthrie, P., 2019. "Applying Bayesian Model Averaging to Characterise Urban Residential Stock Turnover Dynamics," Cambridge Working Papers in Economics 1986, Faculty of Economics, University of Cambridge.
    2. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    3. Hanson, Paul C. & Stillman, Aviah B. & Jia, Xiaowei & Karpatne, Anuj & Dugan, Hilary A. & Carey, Cayelan C. & Stachelek, Joseph & Ward, Nicole K. & Zhang, Yu & Read, Jordan S. & Kumar, Vipin, 2020. "Predicting lake surface water phosphorus dynamics using process-guided machine learning," Ecological Modelling, Elsevier, vol. 430(C).
    4. Milan Daus & Katharina Koberger & Kaan Koca & Felix Beckers & Jorge Encinas Fernández & Barbara Weisbrod & Daniel Dietrich & Sabine Ulrike Gerbersdorf & Rüdiger Glaser & Stefan Haun & Hilmar Hofmann &, 2021. "Interdisciplinary Reservoir Management—A Tool for Sustainable Water Resources Management," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    5. Hannah Al Ali & Alireza Daneshkhah & Abdesslam Boutayeb & Zindoga Mukandavire, 2022. "Examining Type 1 Diabetes Mathematical Models Using Experimental Data," IJERPH, MDPI, vol. 19(2), pages 1-20, January.
    6. Taffi, Marianna & Paoletti, Nicola & Liò, Pietro & Pucciarelli, Sandra & Marini, Mauro, 2015. "Bioaccumulation modelling and sensitivity analysis for discovering key players in contaminated food webs: The case study of PCBs in the Adriatic Sea," Ecological Modelling, Elsevier, vol. 306(C), pages 205-215.
    7. Yongmei Hou & Xiaolong Liu & Guilin Han & Li Bai & Jun Li & Yusi Wang, 2022. "The Impacts of Nitrogen Pollution and Urbanization on the Carbon Dioxide Emission from Sewage-Draining River Networks," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    8. Jannik Martens & Birgit Wild & Igor Semiletov & Oleg V. Dudarev & Örjan Gustafsson, 2022. "Circum-Arctic release of terrestrial carbon varies between regions and sources," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Xiaofang Huang & Lirong Lin & Shuwen Ding & Zhengchao Tian & Xinyuan Zhu & Keren Wu & Yuanzhe Zhao, 2022. "Characteristics of Soil Erodibility K Value and Its Influencing Factors in the Changyan Watershed, Southwest Hubei, China," Land, MDPI, vol. 11(1), pages 1-14, January.
    10. Jiping Sheng & Xiaoge Gao & Yongqi Sun, 2024. "Sustainability of the Food Industry: Ecological Efficiency and Influencing Mechanism of Carbon Emissions Trading Policy in China," Sustainability, MDPI, vol. 16(5), pages 1-25, March.
    11. Alexander E. Cagle & Alona Armstrong & Giles Exley & Steven M. Grodsky & Jordan Macknick & John Sherwin & Rebecca R. Hernandez, 2020. "The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    12. Yuqing Miao & Fanghu Sun & Weilin Hong & Fengman Fang & Jian Yu & Hao Luo & Chuansheng Wu & Guanglai Xu & Yilin Sun & Henan Meng, 2022. "Greenhouse Gas Emissions from a Main Tributary of the Yangtze River, Eastern China," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    13. Ji, Qianfeng & Li, Kefeng & Wang, Yuanming & Feng, Jingjie & Li, Ran & Liang, Ruifeng, 2022. "Effect of floating photovoltaic system on water temperature of deep reservoir and assessment of its potential benefits, a case on Xiangjiaba Reservoir with hydropower station," Renewable Energy, Elsevier, vol. 195(C), pages 946-956.
    14. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    15. Tiphaine Chevallier & Maud Loireau & Romain Courault & lydie chapuis-lardy & Thierry Desjardins & Cécile Gomez & Alexandre Grondin & Frédéric Guérin & Didier Orange & Raphaël Pélissier & Georges Serpa, 2020. "Paris climate agreement: Promoting interdisciplinary science and stakeholders' approaches for multi-scale implementation of continental carbon sequestration," ULB Institutional Repository 2013/312984, ULB -- Universite Libre de Bruxelles.
    16. Meier, Laura & Brauns, Mario & Grimm, Volker & Weitere, Markus & Frank, Karin, 2022. "MASTIFF: A mechanistic model for cross-scale analyses of the functioning of multiple stressed riverine ecosystems," Ecological Modelling, Elsevier, vol. 470(C).
    17. Hussnain Mukhtar & Yu-Pin Lin & Oleg V. Shipin & Joy R. Petway, 2017. "Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC," IJERPH, MDPI, vol. 14(7), pages 1-15, July.
    18. Sehjeong Kim & Abdessamad Tridane, 2017. "Thalassemia in the United Arab Emirates: Why it can be prevented but not eradicated," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-13, January.
    19. Xiaoqiang Li & Guilin Han & Man Liu & Chao Song & Qian Zhang & Kunhua Yang & Jinke Liu, 2019. "Hydrochemistry and Dissolved Inorganic Carbon (DIC) Cycling in a Tropical Agricultural River, Mun River Basin, Northeast Thailand," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    20. Li, Ruishi & Zhao, Rongqin & Xie, Zhixiang & Xiao, Liangang & Chuai, Xiaowei & Feng, Mengyu & Zhang, Huifang & Luo, Huili, 2022. "Water–energy–carbon nexus at campus scale: Case of North China University of Water Resources and Electric Power," Energy Policy, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:386:y:2018:i:c:p:71-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.