IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v393y2019icp25-36.html
   My bibliography  Save this article

Comparison of aquatic ecosystem functioning between eutrophic and hypereutrophic cold-region river-lake systems

Author

Listed:
  • Akomeah, Eric
  • Lindenschmidt, Karl-Erich
  • Chapra, Steven C.

Abstract

Located on the same river, the degree of eutrophication in the upper and middle reaches of the Qu’Appelle River in Saskatchewan are different. While the upper Qu’Appelle is eutrophic, the middle Qu’Appelle River is hypereutrophic. To manage the river sustainably, there is a need to understand key processes governing eutrophication in both systems. In this study, a comprehensive global sensitivity analysis technique, Variogram Analysis of Response Surface (VARS), was applied to gain insights to the functioning of the two systems. Eutrophication in both systems was modelled using the Water quality Analysis Simulation Program (WASP 7.52). The performance of the model to predict key variables of eutrophication was measured using relative root mean square error. The global sensitivity analyses showed that although diffuse loading has significant influence on the systems, prevailing processes governing eutrophic state in the upper Qu’Appelle River include: nutrient and, phytoplankton cycles. Meanwhile, in the middle Qu’Appelle River a number of processes including phytoplankton cycle, nutrient cycle, diffuse loading and DO balance together sustain its hypereutrophic state.

Suggested Citation

  • Akomeah, Eric & Lindenschmidt, Karl-Erich & Chapra, Steven C., 2019. "Comparison of aquatic ecosystem functioning between eutrophic and hypereutrophic cold-region river-lake systems," Ecological Modelling, Elsevier, vol. 393(C), pages 25-36.
  • Handle: RePEc:eee:ecomod:v:393:y:2019:i:c:p:25-36
    DOI: 10.1016/j.ecolmodel.2018.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018304150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bae, Soonyim & Seo, Dongil, 2018. "Analysis and modeling of algal blooms in the Nakdong River, Korea," Ecological Modelling, Elsevier, vol. 372(C), pages 53-63.
    2. Jiang, Long & Li, Yiping & Zhao, Xu & Tillotson, Martin R. & Wang, Wencai & Zhang, Shuangshuang & Sarpong, Linda & Asmaa, Qhtan & Pan, Baozhu, 2018. "Parameter uncertainty and sensitivity analysis of water quality model in Lake Taihu, China," Ecological Modelling, Elsevier, vol. 375(C), pages 1-12.
    3. McCullough, Ian M. & Dugan, Hilary A. & Farrell, Kaitlin J. & Morales-Williams, Ana M. & Ouyang, Zutao & Roberts, Derek & Scordo, Facundo & Bartlett, Sarah L. & Burke, Samantha M. & Doubek, Jonathan P, 2018. "Dynamic modeling of organic carbon fates in lake ecosystems," Ecological Modelling, Elsevier, vol. 386(C), pages 71-82.
    4. Yi, Xuan & Zou, Rui & Guo, Huaicheng, 2016. "Global sensitivity analysis of a three-dimensional nutrients-algae dynamic model for a large shallow lake," Ecological Modelling, Elsevier, vol. 327(C), pages 74-84.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chen & Zhu, Zixuan & Špoljar, Maria & Kuczyńska-Kippen, Natalia & Dražina, Tvrtko & Cvetnić, Matija & Mleczek, Mirosław, 2022. "Ecosystem models indicate zooplankton biomass response to nutrient input and climate warming is related to lake size," Ecological Modelling, Elsevier, vol. 464(C).
    2. Hanane Rhomad & Karima Khalil & Khalid Elkalay, 2023. "Water Quality Modeling in Atlantic Region: Review, Science Mapping and Future Research Directions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 451-499, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bae, Sunim & Seo, Dongil, 2021. "Changes in algal bloom dynamics in a regulated large river in response to eutrophic status," Ecological Modelling, Elsevier, vol. 454(C).
    2. Ruichen Xu & Yong Pang & Zhibing Hu & Xiaoyan Hu, 2022. "The Spatiotemporal Characteristics of Water Quality and Main Controlling Factors of Algal Blooms in Tai Lake, China," Sustainability, MDPI, vol. 14(9), pages 1-17, May.
    3. Kim, Jaeyoung & Seo, Dongil & Jones, John R., 2022. "Harmful algal bloom dynamics in a tidal river influenced by hydraulic control structures," Ecological Modelling, Elsevier, vol. 467(C).
    4. Xu, Zhihao & Yin, Xinan & Yang, Zhifeng & Cai, Yanpeng & Sun, Tao, 2016. "New model to assessing nutrient assimilative capacity in plant-dominated lakes: Considering ecological effects of hydrological changes," Ecological Modelling, Elsevier, vol. 332(C), pages 94-102.
    5. Zou, Rui & Wu, Zhen & Zhao, Lei & Elser, James J. & Yu, Yanhong & Chen, Yihui & Liu, Yong, 2020. "Seasonal algal blooms support sediment release of phosphorus via positive feedback in a eutrophic lake: Insights from a nutrient flux tracking modeling," Ecological Modelling, Elsevier, vol. 416(C).
    6. Jiancai Deng & Fang Chen & Weiping Hu & Xin Lu & Bin Xu & David P. Hamilton, 2019. "Variations in the Distribution of Chl- a and Simulation Using a Multiple Regression Model," IJERPH, MDPI, vol. 16(22), pages 1-16, November.
    7. Shen, Jian & Qin, Qubin & Wang, Ya & Sisson, Mac, 2019. "A data-driven modeling approach for simulating algal blooms in the tidal freshwater of James River in response to riverine nutrient loading," Ecological Modelling, Elsevier, vol. 398(C), pages 44-54.
    8. Hanane Rhomad & Karima Khalil & Khalid Elkalay, 2023. "Water Quality Modeling in Atlantic Region: Review, Science Mapping and Future Research Directions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 451-499, January.
    9. Muhammad Mazhar Iqbal & Muhammad Shoaib & Hafiz Umar Farid & Jung Lyul Lee, 2018. "Assessment of Water Quality Profile Using Numerical Modeling Approach in Major Climate Classes of Asia," IJERPH, MDPI, vol. 15(10), pages 1-26, October.
    10. Dash, Siddhant & Kalamdhad, Ajay S., 2022. "Systematic bibliographic research on eutrophication-based ecological modelling of aquatic ecosystems through the lens of science mapping," Ecological Modelling, Elsevier, vol. 472(C).
    11. Jiang, Long & Li, Yiping & Zhao, Xu & Tillotson, Martin R. & Wang, Wencai & Zhang, Shuangshuang & Sarpong, Linda & Asmaa, Qhtan & Pan, Baozhu, 2018. "Parameter uncertainty and sensitivity analysis of water quality model in Lake Taihu, China," Ecological Modelling, Elsevier, vol. 375(C), pages 1-12.
    12. Linda Sarpong & Yiping Li & Eyram Norgbey & Amechi S. Nwankwegu & Yue Cheng & Salifu Nasiru & Isaac Kwesi Nooni & Victor Edem Setordjie, 2020. "A Sediment Diagenesis Model of Seasonal Nitrate and Ammonium Flux Spatial Variation Contributing to Eutrophication at Taihu, China," IJERPH, MDPI, vol. 17(11), pages 1-14, June.
    13. Dash, Siddhant & Borah, Smitom Swapna & Kalamdhad, Ajay S., 2020. "Study of the limnology of wetlands through a one-dimensional model for assessing the eutrophication levels induced by various pollution sources," Ecological Modelling, Elsevier, vol. 416(C).
    14. Lee, Donghyun & Kim, Mingyu & Lee, Beomhui & Chae, Sangwon & Kwon, Sungjun & Kang, Sungwon, 2022. "Integrated explainable deep learning prediction of harmful algal blooms," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    15. Soares, L.M.V. & Calijuri, M.C., 2021. "Sensitivity and identifiability analyses of parameters for water quality modeling of subtropical reservoirs," Ecological Modelling, Elsevier, vol. 458(C).
    16. Zhang, Chen & Zhu, Zixuan & Špoljar, Maria & Kuczyńska-Kippen, Natalia & Dražina, Tvrtko & Cvetnić, Matija & Mleczek, Mirosław, 2022. "Ecosystem models indicate zooplankton biomass response to nutrient input and climate warming is related to lake size," Ecological Modelling, Elsevier, vol. 464(C).
    17. Bae, Soonyim & Seo, Dongil, 2018. "Analysis and modeling of algal blooms in the Nakdong River, Korea," Ecological Modelling, Elsevier, vol. 372(C), pages 53-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:393:y:2019:i:c:p:25-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.