IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i10p2258-d175837.html
   My bibliography  Save this article

Assessment of Water Quality Profile Using Numerical Modeling Approach in Major Climate Classes of Asia

Author

Listed:
  • Muhammad Mazhar Iqbal

    (Graduate School of Water Resources, Sungkyunkwan University, Suwon-si 2066, Korea)

  • Muhammad Shoaib

    (Graduate School of Water Resources, Sungkyunkwan University, Suwon-si 2066, Korea)

  • Hafiz Umar Farid

    (Department of Agricultural Engineering, Bahauddin Zakariya University, Multan 66000, Pakistan)

  • Jung Lyul Lee

    (Graduate School of Water Resources, Sungkyunkwan University, Suwon-si 2066, Korea)

Abstract

A river water quality spatial profile has a diverse pattern of variation over different climatic regions. To comprehend this phenomenon, our study evaluated the spatial scale variation of the Water Quality Index (WQI). The study was carried out over four main climatic classes in Asia based on the Koppen-Geiger climate classification system: tropical, temperate, cold, and arid. The one-dimensional surface water quality model, QUAL2Kw was selected and compared for water quality simulations. Calibration and validation were separately performed for the model predictions over different climate classes. The accuracy of the water quality model was assessed using different statistical analyses. The spatial profile of WQI was calculated using model predictions based on dissolved oxygen (DO), biological oxygen demand (BOD), nitrate (NO 3 ), and pH. The results showed that there is a smaller longitudinal variation of WQI in the cold climatic regions than other regions, which does not change the status of WQI. Streams from arid, temperate, and tropical climatic regions show a decreasing trend of DO with respect to the longitudinal profiles of main river flows. Since this study found that each climate zone has the different impact on DO dynamics such as reaeration rate, reoxygenation, and oxygen solubility. The outcomes obtained in this study are expected to provide the impetus for developing a strategy for the viable improvement of the water environment.

Suggested Citation

  • Muhammad Mazhar Iqbal & Muhammad Shoaib & Hafiz Umar Farid & Jung Lyul Lee, 2018. "Assessment of Water Quality Profile Using Numerical Modeling Approach in Major Climate Classes of Asia," IJERPH, MDPI, vol. 15(10), pages 1-26, October.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:10:p:2258-:d:175837
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/10/2258/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/10/2258/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ostojski, Mieczysław S. & Gębala, Joanna & Orlińska-Woźniak, Paulina & Wilk, Paweł, 2016. "Implementation of robust statistics in the calibration, verification and validation step of model evaluation to better reflect processes concerning total phosphorus load occurring in the catchment," Ecological Modelling, Elsevier, vol. 332(C), pages 83-93.
    2. Bae, Soonyim & Seo, Dongil, 2018. "Analysis and modeling of algal blooms in the Nakdong River, Korea," Ecological Modelling, Elsevier, vol. 372(C), pages 53-63.
    3. Missaghi, Shahram & Hondzo, Miki, 2010. "Evaluation and application of a three-dimensional water quality model in a shallow lake with complex morphometry," Ecological Modelling, Elsevier, vol. 221(11), pages 1512-1525.
    4. Lee, Ingyu & Hwang, Hyundong & Lee, Jungwoo & Yu, Nayoung & Yun, Jinhuck & Kim, Hyunook, 2017. "Modeling approach to evaluation of environmental impacts on river water quality: A case study with Galing River, Kuantan, Pahang, Malaysia," Ecological Modelling, Elsevier, vol. 353(C), pages 167-173.
    5. N. Arnell & S. Brown & S. Gosling & P. Gottschalk & J. Hinkel & C. Huntingford & B. Lloyd-Hughes & J. Lowe & R. Nicholls & T. Osborn & T. Osborne & G. Rose & P. Smith & T. Wheeler & P. Zelazowski, 2016. "The impacts of climate change across the globe: A multi-sectoral assessment," Climatic Change, Springer, vol. 134(3), pages 457-474, February.
    6. James, R. Thomas, 2016. "Recalibration of the Lake Okeechobee Water Quality Model (LOWQM) to extreme hydro-meteorological events," Ecological Modelling, Elsevier, vol. 325(C), pages 71-83.
    7. Gula Tang & Yunqiang Zhu & Guozheng Wu & Jing Li & Zhao-Liang Li & Jiulin Sun, 2016. "Modelling and Analysis of Hydrodynamics and Water Quality for Rivers in the Northern Cold Region of China," IJERPH, MDPI, vol. 13(4), pages 1-15, April.
    8. Kannel, Prakash Raj & Lee, S. & Lee, Y.-S. & Kanel, S.R. & Pelletier, G.J., 2007. "Application of automated QUAL2Kw for water quality modeling and management in the Bagmati River, Nepal," Ecological Modelling, Elsevier, vol. 202(3), pages 503-517.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hafiz Umar Farid & Hafiz Usman Ayub & Zahid Mahmood Khan & Ijaz Ahmad & Muhammad Naveed Anjum & Rana Muhammad Asif Kanwar & Muhammad Mubeen & Pervaiz Sakinder, 2023. "Groundwater quality risk assessment using hydro-chemical and geospatial analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8343-8365, August.
    2. Basheer A. Elubid & Tao Huang & Ekhlas H. Ahmed & Jianfei Zhao & Khalid. M. Elhag & Waleed Abbass & Mohammed M. Babiker, 2019. "Geospatial Distributions of Groundwater Quality in Gedaref State Using Geographic Information System (GIS) and Drinking Water Quality Index (DWQI)," IJERPH, MDPI, vol. 16(5), pages 1-20, February.
    3. Muhammad Mazhar Iqbal & Malik Muhammad Akram & Maqsood Ahmad & Saddam Hussain & Ghulam Usman, 2021. "Regional Climatic Response To Global Warming And Agriculture In Pakistan," Big Data In Water Resources Engineering (BDWRE), Zibeline International Publishing, vol. 2(1), pages 18-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bae, Sunim & Seo, Dongil, 2021. "Changes in algal bloom dynamics in a regulated large river in response to eutrophic status," Ecological Modelling, Elsevier, vol. 454(C).
    2. Bae, Soonyim & Seo, Dongil, 2018. "Analysis and modeling of algal blooms in the Nakdong River, Korea," Ecological Modelling, Elsevier, vol. 372(C), pages 53-63.
    3. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    4. Kim, Jaeyoung & Seo, Dongil & Jones, John R., 2022. "Harmful algal bloom dynamics in a tidal river influenced by hydraulic control structures," Ecological Modelling, Elsevier, vol. 467(C).
    5. Lindim, C. & Pinho, J.L. & Vieira, J.M.P., 2011. "Analysis of spatial and temporal patterns in a large reservoir using water quality and hydrodynamic modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2485-2494.
    6. Courtney M. Regan & Jeffery D. Connor & Md Sayed Iftekhar, 2023. "An economic assessment of options for operating within plantation forestry water entitlements and tightening cap and trade policy," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(2), pages 303-322, April.
    7. Niu, Zhiguang & Gou, Qianqian & Wang, Xiujun & Zhang, Ying, 2016. "Simulation of a water ecosystem in a landscape lake in Tianjin with AQUATOX: Sensitivity, calibration, validation and ecosystem prognosis," Ecological Modelling, Elsevier, vol. 335(C), pages 54-63.
    8. Akomeah, Eric & Lindenschmidt, Karl-Erich & Chapra, Steven C., 2019. "Comparison of aquatic ecosystem functioning between eutrophic and hypereutrophic cold-region river-lake systems," Ecological Modelling, Elsevier, vol. 393(C), pages 25-36.
    9. Samara Soares & Joel Vasco & Paulo Scalize, 2023. "Water Quality Simulation in the Bois River, Goiás, Central Brazil," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    10. Li, Weiming & Chen, Qiuwen & Cai, Desuo & Li, Ruonan, 2015. "Determination of an appropriate ecological hydrograph for a rare fish species using an improved fish habitat suitability model introducing landscape ecology index," Ecological Modelling, Elsevier, vol. 311(C), pages 31-38.
    11. Zhuohang Xin & Lei Ye & Chi Zhang, 2019. "Application of Export Coefficient Model and QUAL2K for Water Environmental Management in a Rural Watershed," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    12. Holguin-Gonzalez, Javier E. & Boets, Pieter & Alvarado, Andres & Cisneros, Felipe & Carrasco, María C. & Wyseure, Guido & Nopens, Ingmar & Goethals, Peter L.M., 2013. "Integrating hydraulic, physicochemical and ecological models to assess the effectiveness of water quality management strategies for the River Cuenca in Ecuador," Ecological Modelling, Elsevier, vol. 254(C), pages 1-14.
    13. Orlińska-Woźniak, Paulina & Wilk, Paweł & Szalińska, Ewa, 2020. "Delimitation of nutrient vulnerable zones - a comprehensive method to manage a persistent problem of agriculture," Agricultural Systems, Elsevier, vol. 183(C).
    14. Mohd Khairul Amri Kamarudin & Noorjima Abd Wahab & Hafizan Juahir & Nur Ili Hasmida Mustaffa & Muhammad Hafiz Md Saad & Siti Nor Aisyah Bati & Frankie Marcus Ata, 2022. "Impact Of Wastewater On Surface Water Quality In Kenyir Lake Basin, Hulu Terengganu," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 4(2), pages 68-72, June.
    15. Shen, Jian & Qin, Qubin & Wang, Ya & Sisson, Mac, 2019. "A data-driven modeling approach for simulating algal blooms in the tidal freshwater of James River in response to riverine nutrient loading," Ecological Modelling, Elsevier, vol. 398(C), pages 44-54.
    16. Sinan Q. Salih & Intisar Alakili & Ufuk Beyaztas & Shamsuddin Shahid & Zaher Mundher Yaseen, 2021. "Prediction of dissolved oxygen, biochemical oxygen demand, and chemical oxygen demand using hydrometeorological variables: case study of Selangor River, Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 8027-8046, May.
    17. Bello, Al-Amin Danladi & Haniffah, Mohd Ridza Mohd, 2021. "Modelling the effects of urbanization on nutrients pollution for prospective management of a tropical watershed: A case study of Skudai River watershed," Ecological Modelling, Elsevier, vol. 459(C).
    18. Pauer, James J. & Auer, Martin T., 2009. "Formulation and testing of a novel river nitrification model," Ecological Modelling, Elsevier, vol. 220(6), pages 857-866.
    19. Maciel, Everton A. & Martins, Valeria F. & de Paula, Mateus D. & Huth, Andreas & Guilherme, Frederico A.G. & Fischer, Rico & Giles, André & Barbosa, Reinaldo I. & Cavassan, Osmar & Martins, Fernando R, 2021. "Defaunation and changes in climate and fire frequency have synergistic effects on aboveground biomass loss in the brazilian savanna," Ecological Modelling, Elsevier, vol. 454(C).
    20. Shahram Missaghi & Miki Hondzo & William Herb, 2017. "Prediction of lake water temperature, dissolved oxygen, and fish habitat under changing climate," Climatic Change, Springer, vol. 141(4), pages 747-757, April.

    More about this item

    Keywords

    Asia; water quality; climate classes; QUAL2Kw; WQI;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:10:p:2258-:d:175837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.