IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v359y2017icp285-292.html
   My bibliography  Save this article

Dynamic patterns of overexploitation in fisheries

Author

Listed:
  • Perissi, Ilaria
  • Bardi, Ugo
  • El Asmar, Toufic
  • Lavacchi, Alessandro

Abstract

Understanding overfishing and regulating fishing quotas is a major global challenge for the 21st Century both in terms of providing food for humankind and to preserve the oceans’ ecosystems. However, fishing is a complex economic activity, affected not just by overfishing but also by such factors as pollution, technology, financial factors and more. For this reason, it is often difficult to state with complete certainty that overfishing is the cause of the decline of a fishery. In this study, we developed a simple dynamic model specifically designed to isolate and to study the role of depletion on production. The model is based on the well-known Lotka-Volterra model, or Prey-Predator mechanism, assuming that the fish stock and the fishing industry are coupled variables that dynamically affect each other. In the model, the fishing industry acts as the “predator” and the fish stock as the “prey”. If the model can fit historical data, in particular relative to the productive decline of specific fisheries, then we have a strong indication that the decline of the fish stock is driving the decline of the fishery production. The model doesn’t pretend to be a general description of the fishing industry in all its varied forms; however, the data reported here show that the model can describe several historical cases of fisheries whose production decreased and collapsed, indicating that the overexploitation of the fish stocks is an important factor in the decline of fisheries.

Suggested Citation

  • Perissi, Ilaria & Bardi, Ugo & El Asmar, Toufic & Lavacchi, Alessandro, 2017. "Dynamic patterns of overexploitation in fisheries," Ecological Modelling, Elsevier, vol. 359(C), pages 285-292.
  • Handle: RePEc:eee:ecomod:v:359:y:2017:i:c:p:285-292
    DOI: 10.1016/j.ecolmodel.2017.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016306767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ugo Bardi & Alessandro Lavacchi, 2009. "A Simple Interpretation of Hubbert’s Model of Resource Exploitation," Energies, MDPI, vol. 2(3), pages 1-16, August.
    2. H. Scott Gordon, 1954. "The Economic Theory of a Common-Property Resource: The Fishery," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 9, pages 178-203, Palgrave Macmillan.
    3. Daniel Pauly & Dirk Zeller, 2016. "Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    4. Bailey, Jennifer, 2016. "Adventures in cross-disciplinary studies: Grand strategy and fisheries management," Marine Policy, Elsevier, vol. 63(C), pages 18-27.
    5. Peter Roopnarine, 2013. "Ecology and the Tragedy of the Commons," Sustainability, MDPI, vol. 5(2), pages 1-25, February.
    6. Bardi, Ugo & Lavacchi, Alessandro & Yaxley, Leigh, 2011. "Modelling EROEI and net energy in the exploitation of non renewable resources," Ecological Modelling, Elsevier, vol. 223(1), pages 54-58.
    7. H. Scott Gordon, 1954. "The Economic Theory of a Common-Property Resource: The Fishery," Journal of Political Economy, University of Chicago Press, vol. 62(2), pages 124-124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ugo Bardi & Sara Falsini & Ilaria Perissi, 2019. "Toward a General Theory of Societal Collapse: A Biophysical Examination of Tainter’s Model of the Diminishing Returns of Complexity," Biophysical Economics and Resource Quality, Springer, vol. 4(1), pages 1-9, March.
    2. María-José Gutiérrez & Belén Inguanzo, 2019. "Contributing to Fisheries Sustainability: Inequality Analysis in the High Seas Catches of Countries," Sustainability, MDPI, vol. 11(11), pages 1-20, June.
    3. Ilaria Perissi & Alessandro Lavacchi & Ugo Bardi, 2021. "The Role of Energy Return on Energy Invested (EROEI) in Complex Adaptive Systems," Energies, MDPI, vol. 14(24), pages 1-15, December.
    4. Aleksandr Abakumov & Yuri Izrailsky, 2022. "Optimal Harvest Problem for Fish Population—Structural Stabilization," Mathematics, MDPI, vol. 10(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manzoor, Talha & Rovenskaya, Elena & Muhammad, Abubakr, 2016. "Game-theoretic insights into the role of environmentalism and social-ecological relevance: A cognitive model of resource consumption," Ecological Modelling, Elsevier, vol. 340(C), pages 74-85.
    2. Tim Cashion & Santiago de la Puente & Dyhia Belhabib & Daniel Pauly & Dirk Zeller & U Rashid Sumaila, 2018. "Establishing company level fishing revenue and profit losses from fisheries: A bottom-up approach," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-20, November.
    3. David A Carozza & Daniele Bianchi & Eric D Galbraith, 2017. "Formulation, General Features and Global Calibration of a Bioenergetically-Constrained Fishery Model," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-28, January.
    4. Kotchen, Matthew J. & Salant, Stephen W., 2011. "A free lunch in the commons," Journal of Environmental Economics and Management, Elsevier, vol. 61(3), pages 245-253, May.
    5. Holland, Daniel S. & Herrera, Guillermo E., 2012. "The impact of age structure, uncertainty, and asymmetric spatial dynamics on regulatory performance in a fishery metapopulation," Ecological Economics, Elsevier, vol. 77(C), pages 207-218.
    6. McCloskey Deirdre Nansen, 2018. "The Two Movements in Economic Thought, 1700–2000: Empty Economic Boxes Revisited," Man and the Economy, De Gruyter, vol. 5(2), pages 1-20, December.
    7. Carlson, Ernest W., 1971. "The Biological and Economic Objectives of Fishery Management," File Manuscripts, United States National Marine Fisheries Service, Economic Research Division, number 233587.
    8. Coxhead, Ian A. & Jayasuriya, Sisira, 2003. "Trade, Liberalization, Resource Degradation and Industrial Pollution in Developing Countries: An Integrated Analysis," Staff Papers 12691, University of Wisconsin-Madison, Department of Agricultural and Applied Economics.
    9. Busch, Jonah, 2008. "Gains from configuration: The transboundary protected area as a conservation tool," Ecological Economics, Elsevier, vol. 67(3), pages 394-404, October.
    10. Rauscher, Michael, 1996. "Sustainable Development and Complex Ecosystems. An Economist's View," Thuenen-Series of Applied Economic Theory 02, University of Rostock, Institute of Economics.
    11. Squires, Dale & Vestergaard, Niels, 2013. "Technical change in fisheries," Marine Policy, Elsevier, vol. 42(C), pages 286-292.
    12. De Alessi, Michael & Sullivan, Joseph M. & Hilborn, Ray, 2014. "The legal, regulatory, and institutional evolution of fishing cooperatives in Alaska and the West Coast of the United States," Marine Policy, Elsevier, vol. 43(C), pages 217-225.
    13. B. Rudders, David & Ward, John M., 2015. "Own-price elasticity of open access supply as a long-run measure of fish stock abundance," Marine Policy, Elsevier, vol. 53(C), pages 215-226.
    14. Barkley Rosser, J. Jr., 2001. "Complex ecologic-economic dynamics and environmental policy," Ecological Economics, Elsevier, vol. 37(1), pages 23-37, April.
    15. Zhang, Yue & Zheng, Yan & Liu, Xi & Zhang, Qingling & Li, Aihua, 2016. "Dynamical analysis of a differential algebraic bio-economic model with stage-structured and stochastic fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 222-229.
    16. Bell, Frederick W. & Nash, Darrel A. & Carlson, Ernest W. & Waugh, Frederick V. & Kinoshita, Richard K. & Fullenbaum, Richard F., 1970. "The Future of the World's Fishery Resources: Forecasts of Demand, Supply and Prices to the Year 2000 with a Discussion of Implications for Public Policy," File Manuscripts, United States National Marine Fisheries Service, Economic Research Division, number 233219.
    17. Jorge Higinio Maldonado & Rocío del Pilar Moreno-Sanchez, 2016. "Exacerbating the Tragedy of the Commons: Private Inefficient Outcomes and Peer Effect in Experimental Games with Fishing Communities," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-17, February.
    18. Strydom, M.B. & Nieuwoudt, W. Lieb, 1998. "An Economic Analysis Of Restructuring The South African Hake Quota Market," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 37(3), pages 1-15, September.
    19. Stahn, Hubert & Tomini, Agnes, 2021. "Externality and common-pool resources: The case of artesian aquifers," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    20. repec:mse:cesdoc:13002r is not listed on IDEAS
    21. Horan, R.D. & Bulte, E.H., 2004. "Optimal and open access harvesting and multi-use species in a second best world," Other publications TiSEM 95000e50-7225-4f4d-aeaf-a, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:359:y:2017:i:c:p:285-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.