IDEAS home Printed from
   My bibliography  Save this article

Representing climate, disturbance, and vegetation interactions in landscape models


  • Keane, Robert E.
  • McKenzie, Donald
  • Falk, Donald A.
  • Smithwick, Erica A.H.
  • Miller, Carol
  • Kellogg, Lara-Karena B.


The prospect of rapidly changing climates over the next century calls for methods to predict their effects on myriad, interactive ecosystem processes. Spatially explicit models that simulate ecosystem dynamics at fine (plant, stand) to coarse (regional, global) scales are indispensable tools for meeting this challenge under a variety of possible futures. A special class of these models, called landscape models (LMs), simulates dynamics at intermediate scales where many critical ecosystem processes interact. The complicated dependencies among climate, disturbance, and vegetation present a difficult challenge for LMs, however, because their simulation must reconcile processes and their interactions that occur at different spatial and temporal scales. In the absence of these interactions, key thresholds in ecosystem responses to changes in climate may go undetected or misrepresented. In this paper, we present a general strategy for constructing the next generation of LMs that ensures that interactions are modeled at appropriate scales of time and space, and that, when possible, processes representing these interactions are simulated mechanistically. We identify six key questions to frame this strategy and then provide guidance and possible solutions on the structure and content needed in future LMs to ensure that climate-vegetation-disturbance interactions are incorporated effectively.

Suggested Citation

  • Keane, Robert E. & McKenzie, Donald & Falk, Donald A. & Smithwick, Erica A.H. & Miller, Carol & Kellogg, Lara-Karena B., 2015. "Representing climate, disturbance, and vegetation interactions in landscape models," Ecological Modelling, Elsevier, vol. 309, pages 33-47.
  • Handle: RePEc:eee:ecomod:v:309-310:y:2015:i::p:33-47
    DOI: 10.1016/j.ecolmodel.2015.04.009

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Smithwick, Erica A.H. & Lucash, Melissa S. & McCormack, M. Luke & Sivandran, Gajan, 2014. "Improving the representation of roots in terrestrial models," Ecological Modelling, Elsevier, vol. 291(C), pages 193-204.
    2. Grimm, Volker & Augusiak, Jacqueline & Focks, Andreas & Frank, Béatrice M. & Gabsi, Faten & Johnston, Alice S.A. & Liu, Chun & Martin, Benjamin T. & Meli, Mattia & Radchuk, Viktoriia & Thorbek, Pernil, 2014. "Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE," Ecological Modelling, Elsevier, vol. 280(C), pages 129-139.
    3. Seidl, Rupert & Fernandes, Paulo M. & Fonseca, Teresa F. & Gillet, François & Jönsson, Anna Maria & Merganičová, Katarína & Netherer, Sigrid & Arpaci, Alexander & Bontemps, Jean-Daniel & Bugmann, Hara, 2011. "Modelling natural disturbances in forest ecosystems: a review," Ecological Modelling, Elsevier, vol. 222(4), pages 903-924.
    4. Huntzinger, D.N. & Post, W.M. & Wei, Y. & Michalak, A.M. & West, T.O. & Jacobson, A.R. & Baker, I.T. & Chen, J.M. & Davis, K.J. & Hayes, D.J. & Hoffman, F.M. & Jain, A.K. & Liu, S. & McGuire, A.D. & N, 2012. "North American Carbon Program (NACP) regional interim synthesis: Terrestrial biospheric model intercomparison," Ecological Modelling, Elsevier, vol. 232(C), pages 144-157.
    5. Lisa Holsinger & Robert Keane & Daniel Isaak & Lisa Eby & Michael Young, 2014. "Relative effects of climate change and wildfires on stream temperatures: a simulation modeling approach in a Rocky Mountain watershed," Climatic Change, Springer, vol. 124(1), pages 191-206, May.
    6. Riggs, Robert A. & Keane, Robert E. & Cimon, Norm & Cook, Rachel & Holsinger, Lisa & Cook, John & DelCurto, Timothy & Baggett, L.Scott & Justice, Donald & Powell, David & Vavra, Martin & Naylor, Bridg, 2015. "Biomass and fire dynamics in a temperate forest-grassland mosaic: Integrating multi-species herbivory, climate, and fire with the FireBGCv2/GrazeBGC system," Ecological Modelling, Elsevier, vol. 296(C), pages 57-78.
    7. L. Mearns & S. Sain & L. Leung & M. Bukovsky & S. McGinnis & S. Biner & D. Caya & R. Arritt & W. Gutowski & E. Takle & M. Snyder & R. Jones & A. Nunes & S. Tucker & D. Herzmann & L. McDaniel & L. Sloa, 2013. "Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP)," Climatic Change, Springer, vol. 120(4), pages 965-975, October.
    8. Rodriguez Gonzalez, Jesus & del Barrio, Gabriel & Duguy, Beatriz, 2008. "Assessing functional landscape connectivity for disturbance propagation on regional scales—A cost-surface model approach applied to surface fire spread," Ecological Modelling, Elsevier, vol. 211(1), pages 121-141.
    9. van Ham, G. & Rotmans, J. & Kleijnen, J.P.C., 1992. "Techniques for sensitivity analysis of simulation models : A case study of the CO2 greenhouse effect," Other publications TiSEM 71317a03-3399-4554-83cb-4, Tilburg University, School of Economics and Management.
    10. de Bruijn, Arjan & Gustafson, Eric J. & Sturtevant, Brian R. & Foster, Jane R. & Miranda, Brian R. & Lichti, Nathanael I. & Jacobs, Douglass F., 2014. "Toward more robust projections of forest landscape dynamics under novel environmental conditions: Embedding PnET within LANDIS-II," Ecological Modelling, Elsevier, vol. 287(C), pages 44-57.
    11. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    12. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    13. Soetaert, Karline & Petzoldt, Thomas, 2010. "Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i03).
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Canelles, Q. & Aquilué, N. & Duane, A. & Brotons, L., 2019. "From stand to landscape: modelling post-fire regeneration and species growth," Ecological Modelling, Elsevier, vol. 404(C), pages 103-111.
    2. Ager, Alan A. & Barros, Ana M.G. & Day, Michelle A. & Preisler, Haiganoush K. & Spies, Thomas A. & Bolte, John, 2018. "Analyzing fine-scale spatiotemporal drivers of wildfire in a forest landscape model," Ecological Modelling, Elsevier, vol. 384(C), pages 87-102.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:309-310:y:2015:i::p:33-47. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.