IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v306y2015icp16-23.html
   My bibliography  Save this article

Surface modeling of ecosystem responses to climatic change in Poyang Lake Basin of China

Author

Listed:
  • Yue, Tian-Xiang
  • Du, Zheng-Ping
  • Lu, Ming
  • Fan, Ze-Meng
  • Wang, Chen-Liang
  • Tian, Yong-Zhong
  • Xu, Bing

Abstract

Surfaces of mean annual temperature and mean annual precipitation during the period from 1951 to 2010 in Jiang-Xi province (Poyang Lake Basin) of China are simulated by means of a method for high accuracy surface modeling (HASM), using data from 106 weather observation stations scattered over and around Poyang Lake Basin. Methodologically, we analyzed errors of HASM by comparing with classical methods. The analysis indicated that HASM has a much higher accuracy than the classical methods. The simulation results from HASM show that mean annual temperature was respectively 17.05°C and 17.46°C in the periods from 1951 to 1980 (P1) and from 1981 to 2010 (P2). Mean annual precipitation was 1602mm and 1718mm, respectively in the P1 and P2. In other words, climate has become warmer and wetter in recent 60 years in general. The ecosystems are very sensitive to relatively small changes in surface meteorology. Warm temperate moist forest and subtropical moist forest were the dominant HLZ types, accounted for 94.99% of total area of Jiang-Xi province. The proportion of warm temperate moist forest decreased from 30.81% to 16.84%, while subtropical moist forest increased from 64.79% to 76.73%. The mean centers of the rare HLZ types, cool temperate wet forest, cool temperate rain forest and subtropical wet forest, moved respectively 291km, 104km and 122km. Warm temperate wet forest and subtropical moist forest had a little shift, moved respectively 21km and 17km during the period from P1 to P2.

Suggested Citation

  • Yue, Tian-Xiang & Du, Zheng-Ping & Lu, Ming & Fan, Ze-Meng & Wang, Chen-Liang & Tian, Yong-Zhong & Xu, Bing, 2015. "Surface modeling of ecosystem responses to climatic change in Poyang Lake Basin of China," Ecological Modelling, Elsevier, vol. 306(C), pages 16-23.
  • Handle: RePEc:eee:ecomod:v:306:y:2015:i:c:p:16-23
    DOI: 10.1016/j.ecolmodel.2014.09.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001400430X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.09.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian-Xiang Yue & Na Zhao & R. Ramsey & Chen-Liang Wang & Ze-Meng Fan & Chuan-Fa Chen & Yi-Min Lu & Bai-Lian Li, 2013. "Climate change trend in China, with improved accuracy," Climatic Change, Springer, vol. 120(1), pages 137-151, September.
    2. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    2. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    3. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    4. Francesca Pilotto & Ingolf Kühn & Rita Adrian & Renate Alber & Audrey Alignier & Christopher Andrews & Jaana Bäck & Luc Barbaro & Deborah Beaumont & Natalie Beenaerts & Sue Benham & David S. Boukal & , 2020. "Meta-analysis of multidecadal biodiversity trends in Europe," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    5. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    6. Hao Wang & Guohua Liu & Zongshan Li & Xin Ye & Bojie Fu & Yihe Lü, 2017. "Analysis of the Driving Forces in Vegetation Variation in the Grain for Green Program Region, China," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    7. Lin, Weiqiang, 2014. "The politics of flying: aeromobile frictions in a mobile city," Journal of Transport Geography, Elsevier, vol. 38(C), pages 92-99.
    8. Fabina, Nicholas S. & Abbott, Karen C. & Gilman, R.Tucker, 2010. "Sensitivity of plant–pollinator–herbivore communities to changes in phenology," Ecological Modelling, Elsevier, vol. 221(3), pages 453-458.
    9. Xiumei Wang & Jianjun Dong & Taogetao Baoyin & Yuhai Bao, 2019. "Estimation and Climate Factor Contribution of Aboveground Biomass in Inner Mongolia’s Typical/Desert Steppes," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    10. Anna Yusa & Peter Berry & June J.Cheng & Nicholas Ogden & Barrie Bonsal & Ronald Stewart & Ruth Waldick, 2015. "Climate Change, Drought and Human Health in Canada," IJERPH, MDPI, vol. 12(7), pages 1-54, July.
    11. A. Ogden & J. Innes, 2008. "Climate change adaptation and regional forest planning in southern Yukon, Canada," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(8), pages 833-861, October.
    12. Ye, Qing & Yang, Xiaoguang & Dai, Shuwei & Chen, Guangsheng & Li, Yong & Zhang, Caixia, 2015. "Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China," Agricultural Water Management, Elsevier, vol. 159(C), pages 35-44.
    13. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    14. Prem B. Parajuli & Priyantha Jayakody & Ying Ouyang, 2018. "Evaluation of Using Remote Sensing Evapotranspiration Data in SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 985-996, February.
    15. Fullman, Timothy J. & Bunting, Erin L. & Kiker, Gregory A. & Southworth, Jane, 2017. "Predicting shifts in large herbivore distributions under climate change and management using a spatially-explicit ecosystem model," Ecological Modelling, Elsevier, vol. 352(C), pages 1-18.
    16. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    17. Debora Sotto & Arlindo Philippi & Tan Yigitcanlar & Md Kamruzzaman, 2019. "Aligning Urban Policy with Climate Action in the Global South: Are Brazilian Cities Considering Climate Emergency in Local Planning Practice?," Energies, MDPI, vol. 12(18), pages 1-31, September.
    18. Baris Karapinar & Gökhan Özertan, 2020. "Yield implications of date and cultivar adaptation to wheat phenological shifts: a survey of farmers in Turkey," Climatic Change, Springer, vol. 158(3), pages 453-472, February.
    19. Zhang, Jiarui & Jørgensen, Sven E. & Lu, Jianjian & Nielsen, Søren N. & Wang, Qiang, 2014. "A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming," Ecological Modelling, Elsevier, vol. 294(C), pages 105-116.
    20. Annie Paradis & Joe Elkinton & Katharine Hayhoe & John Buonaccorsi, 2008. "Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(5), pages 541-554, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:306:y:2015:i:c:p:16-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.