IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v247y2012icp11-26.html
   My bibliography  Save this article

N14C: A plant–soil nitrogen and carbon cycling model to simulate terrestrial ecosystem responses to atmospheric nitrogen deposition

Author

Listed:
  • Tipping, E.
  • Rowe, E.C.
  • Evans, C.D.
  • Mills, R.T.E.
  • Emmett, B.A.
  • Chaplow, J.S.
  • Hall, J.R.

Abstract

The dynamic model N14C simulates changes in the plant–soil dynamics of nitrogen and carbon, brought about by the anthropogenic deposition of nitrogen. The model operates with four plant functional types; broadleaved and coniferous trees, herbs and dwarf shrubs. It simulates net primary production (NPP), C and N pools, leaching of dissolved organic carbon and nitrogen (DOC, DON) and inorganic nitrogen, denitrification, and the radiocarbon contents of organic matter, on an annual timestep. Soil organic matter (SOM) comprises three pools, undergoing first-order decomposition reactions with turnover rates ranging from c. 2 to c. 1000 years. Nitrogen immobilisation by SOM occurs if inorganic N remains after plant uptake, and leaching of inorganic N occurs if the immobilisation demand is met. SOM accumulates in the deeper soil by transport and sorption of DOM. Element soil pools accumulate with N inputs by fixation from 12,000 years ago until 1800, when anthropogenic N deposition begins. We describe the parameterisation of N14C with data from 42 published plot studies carried out in northern Europe, plus more general information on N deposition trends, soil radiocarbon, N fixation and denitrification. A general set of 12 parameters describing litter fractionation, N immobilisation, growing season length, DOC and DON leaching, denitrification and NH4 retention was derived by fitting the field data. This provided fair agreements between observations and simulations, which were appreciably improved by moderate (±20%) adjustments of the parameters for specific sites. The parameterised model gives reasonable blind predictions of ecosystem C and N variables from only temperature, precipitation, N deposition, and vegetation type. The results suggest an approximate doubling of NPP due to N deposition, although the majority of the sites remain N-limited. For a given N deposition, leaching rates of inorganic N at conifer and shrub sites exceed those at broadleaf and herb sites.

Suggested Citation

  • Tipping, E. & Rowe, E.C. & Evans, C.D. & Mills, R.T.E. & Emmett, B.A. & Chaplow, J.S. & Hall, J.R., 2012. "N14C: A plant–soil nitrogen and carbon cycling model to simulate terrestrial ecosystem responses to atmospheric nitrogen deposition," Ecological Modelling, Elsevier, vol. 247(C), pages 11-26.
  • Handle: RePEc:eee:ecomod:v:247:y:2012:i:c:p:11-26
    DOI: 10.1016/j.ecolmodel.2012.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012003997
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael W. I. Schmidt & Margaret S. Torn & Samuel Abiven & Thorsten Dittmar & Georg Guggenberger & Ivan A. Janssens & Markus Kleber & Ingrid Kögel-Knabner & Johannes Lehmann & David A. C. Manning & Pa, 2011. "Persistence of soil organic matter as an ecosystem property," Nature, Nature, vol. 478(7367), pages 49-56, October.
    2. Benjamin Z. Houlton & Ying-Ping Wang & Peter M. Vitousek & Christopher B. Field, 2008. "A unifying framework for dinitrogen fixation in the terrestrial biosphere," Nature, Nature, vol. 454(7202), pages 327-330, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akinpelu, O.A. & Olaleye, O. & Fagbola, O., 2023. "The Soil Organic Matter Decomposers: A Bibliometric Analysis," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(4), August.
    2. Kristof Dorau & Chris Bamminger & Daniel Koch & Tim Mansfeldt, 2022. "Evidences of soil warming from long-term trends (1951–2018) in North Rhine-Westphalia, Germany," Climatic Change, Springer, vol. 170(1), pages 1-13, January.
    3. Wojciech Bierza & Joanna Czarnecka & Agnieszka Błońska & Agnieszka Kompała-Bąba & Agnieszka Hutniczak & Bartosz Jendrzejek & Jawdat Bakr & Andrzej M. Jagodziński & Dariusz Prostański & Gabriela Woźnia, 2023. "Plant Diversity and Species Composition in Relation to Soil Enzymatic Activity in the Novel Ecosystems of Urban–Industrial Landscapes," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    4. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.
    5. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    6. Shaw, C.H. & Hilger, A.B. & Metsaranta, J. & Kurz, W.A. & Russo, G. & Eichel, F. & Stinson, G. & Smyth, C. & Filiatrault, M., 2014. "Evaluation of simulated estimates of forest ecosystem carbon stocks using ground plot data from Canada's National Forest Inventory," Ecological Modelling, Elsevier, vol. 272(C), pages 323-347.
    7. Miriam Githongo & Lucy Ngatia & Milka Kiboi & Anne Muriuki & Andreas Fliessbach & Collins Musafiri & Riqiang Fu & Felix Ngetich, 2023. "The Structural Quality of Soil Organic Matter under Selected Soil Fertility Management Practices in the Central Highlands of Kenya," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
    8. Miquelajauregui, Yosune & Cumming, Steven G. & Gauthier, Sylvie, 2019. "Short-term responses of boreal carbon stocks to climate change: A simulation study of black spruce forests," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    9. Rafaella Campos & Gabrielle Ferreira Pires & Marcos Heil Costa, 2020. "Soil Carbon Sequestration in Rainfed and Irrigated Production Systems in a New Brazilian Agricultural Frontier," Agriculture, MDPI, vol. 10(5), pages 1-14, May.
    10. Damien Finn & Kerrilyn Catton & Marijke Heenan & Peter M. Kopittke & Diane Ouwerkerk & Athol V. Klieve & Ram C. Dalal, 2018. "Differential Gene Expression in the Model Actinomycete Streptomyces coelicolor A3(2) Supports Nitrogen Mining Dependent on the Plant Carbon to Nitrogen Ratio," Agriculture, MDPI, vol. 8(12), pages 1-10, December.
    11. Stavros D Veresoglou & Barry Thornton & George Menexes & Andreas P Mamolos & Demetrios S Veresoglou, 2012. "Soil Fertilization Leads to a Decline in Between-Samples Variability of Microbial Community δ13C Profiles in a Grassland Fertilization Experiment," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-8, September.
    12. Ping, Jiaye & Zhou, Jian & Huang, Kun & Sun, Xiaoying & Sun, Huanfa & Xia, Jianyang, 2021. "Modeling the typhoon disturbance effect on ecosystem carbon storage dynamics in a subtropical forest of China's coastal region," Ecological Modelling, Elsevier, vol. 455(C).
    13. Timothy E. Crews & Brian E. Rumsey, 2017. "What Agriculture Can Learn from Native Ecosystems in Building Soil Organic Matter: A Review," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    14. Jean-Sébastien Landry & Navin Ramankutty, 2015. "Carbon Cycling, Climate Regulation, and Disturbances in Canadian Forests: Scientific Principles for Management," Land, MDPI, vol. 4(1), pages 1-36, January.
    15. Dongwei Liu & Shanlong Li & Weixing Zhu & Yongyang Wang & Shasha Zhang & Yunting Fang, 2023. "Storage and Stability of Soil Organic Carbon in Two Temperate Forests in Northeastern China," Land, MDPI, vol. 12(5), pages 1-14, May.
    16. Goncharov, Anton A. & Gorbatova, Anna S. & Sidorova, Alena A. & Tiunov, Alexei V. & Bocharov, Gennady A., 2022. "Mathematical modelling of the interaction of winter wheat (Triticum aestivum) and Fusarium species (Fusarium spp.)," Ecological Modelling, Elsevier, vol. 465(C).
    17. Chin-Chiang Hsu & Heng Tsai & Wen-Shu Huang & Shiuh-Tsuen Huang, 2021. "Carbon Storage along with Soil Profile: An Example of Soil Chronosequence from the Fluvial Terraces on the Pakua Tableland, Taiwan," Land, MDPI, vol. 10(5), pages 1-14, April.
    18. Peyton Ginakes & Julie M. Grossman & John M. Baker & Thanwalee Sooksa-nguan, 2020. "Living Mulch Management Spatially Localizes Nutrient Cycling in Organic Corn Production," Agriculture, MDPI, vol. 10(6), pages 1-10, June.
    19. Prabhat Poudel & Jørgen Ødegaard & Siri Josefine Mo & Rebekka Kaald Andresen & Hans Andre Tandberg & Thomas Cottis & Harald Solberg & Kari Bysveen & Puspa Raj Dulal & Hesam Mousavi & Svein Øivind Solb, 2022. "Italian Ryegrass, Perennial Ryegrass, and Meadow Fescue as Undersown Cover Crops in Spring Wheat and Barley: Results from a Mixed Methods Study in Norway," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    20. Rizki Maftukhah & Katharina M. Keiblinger & Ngadisih Ngadisih & Murtiningrum Murtiningrum & Rosana M. Kral & Axel Mentler & Rebecca Hood-Nowotny, 2023. "Post-Tin-Mining Agricultural Soil Regeneration Using Local Organic Amendments Improve Nitrogen Fixation and Uptake in a Legume–Cassava Intercropping System," Land, MDPI, vol. 12(5), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:247:y:2012:i:c:p:11-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.