IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v245y2012icp121-124.html
   My bibliography  Save this article

Disruption to benthic habitats by moorings of wave energy installations: A modelling case study and implications for overall ecosystem functioning

Author

Listed:
  • Krivtsov, Vladimir
  • Linfoot, Brian

Abstract

This paper presents the research carried out in the marine renewables group of Heriot-Watt University, where the physical models of wave energy converters are first tested in the wave basin, and the results of their behaviour are then compared to the simulations performed using mathematical modelling. An OrcaFlex model is used to assess the scouring effect on bottom sediments and consequent disruption of benthic habitats, and open water tests are being conducted to compare the model performance with the actual observations. The output from OrcaFlex is then imported to Matlab, where the affected area is calculated using the time series of coordinates of touch down points of the mooring lines. The results show that the area of benthic habitats adversely affected by the leading mooring line on a typical wave energy converter (WEC) monotonically increases with the increase in wave height. In regular waves of 6m height and 8s period, the area of benthic habitats adversely affected by the mooring lines may exceed 60m2. In addition to the direct effect on benthic habitats, sediment erosion by mooring lines will effect a whole range of ecosystem processes, e.g. due to changes in biogeochemical cycling and light penetration. These issues should be given a due consideration in calculations of ecological risks and EIA of any moored objects.

Suggested Citation

  • Krivtsov, Vladimir & Linfoot, Brian, 2012. "Disruption to benthic habitats by moorings of wave energy installations: A modelling case study and implications for overall ecosystem functioning," Ecological Modelling, Elsevier, vol. 245(C), pages 121-124.
  • Handle: RePEc:eee:ecomod:v:245:y:2012:i:c:p:121-124
    DOI: 10.1016/j.ecolmodel.2012.02.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012001056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.02.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henfridsson, Urban & Neimane, Viktoria & Strand, Kerstin & Kapper, Robert & Bernhoff, Hans & Danielsson, Oskar & Leijon, Mats & Sundberg, Jan & Thorburn, Karin & Ericsson, Ellerth & Bergman, Karl, 2007. "Wave energy potential in the Baltic Sea and the Danish part of the North Sea, with reflections on the Skagerrak," Renewable Energy, Elsevier, vol. 32(12), pages 2069-2084.
    2. Krivtsov, V. & Howarth, M.J. & Jones, S.E. & Souza, A.J. & Jago, C.F., 2008. "Monitoring and modelling of the Irish Sea and Liverpool Bay: An overview and an SPM case study," Ecological Modelling, Elsevier, vol. 212(1), pages 37-52.
    3. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    4. Krivtsov, V. & Gascoigne, J. & Jones, S.E., 2008. "Harmonic analysis of suspended particulate matter in the Menai Strait (UK)," Ecological Modelling, Elsevier, vol. 212(1), pages 53-67.
    5. Harrison, Gareth P. & Wallace, A. Robin, 2005. "Climate sensitivity of marine energy," Renewable Energy, Elsevier, vol. 30(12), pages 1801-1817.
    6. Asif, M. & Muneer, T., 2007. "Energy supply, its demand and security issues for developed and emerging economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1388-1413, September.
    7. Langhamer, Olivia & Haikonen, Kalle & Sundberg, Jan, 2010. "Wave power--Sustainable energy or environmentally costly? A review with special emphasis on linear wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1329-1335, May.
    8. Korhonen, Jouni & Snakin, Juha-Pekka, 2005. "Analysing the evolution of industrial ecosystems: concepts and application," Ecological Economics, Elsevier, vol. 52(2), pages 169-186, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bonar, Paul A.J. & Bryden, Ian G. & Borthwick, Alistair G.L., 2015. "Social and ecological impacts of marine energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 486-495.
    2. Galparsoro, I. & Korta, M. & Subirana, I. & Borja, Á. & Menchaca, I. & Solaun, O. & Muxika, I. & Iglesias, G. & Bald, J., 2021. "A new framework and tool for ecological risk assessment of wave energy converters projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Foteinis, S. & Tsoutsos, T., 2017. "Strategies to improve sustainability and offset the initial high capital expenditure of wave energy converters (WECs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 775-785.
    4. Flocard, Francois & Ierodiaconou, Daniel & Coghlan, Ian R., 2016. "Multi-criteria evaluation of wave energy projects on the south-east Australian coast," Renewable Energy, Elsevier, vol. 99(C), pages 80-94.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Mei-Hua & Lo, Shang-Lien, 2020. "Developing indicators for the monitoring of the sustainability of food, energy, and water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Chuang, Ming Chih & Ma, Hwong Wen, 2013. "Energy security and improvements in the function of diversity indices—Taiwan energy supply structure case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 9-20.
    3. Angelis-Dimakis, Athanasios & Biberacher, Markus & Dominguez, Javier & Fiorese, Giulia & Gadocha, Sabine & Gnansounou, Edgard & Guariso, Giorgio & Kartalidis, Avraam & Panichelli, Luis & Pinedo, Irene, 2011. "Methods and tools to evaluate the availability of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1182-1200, February.
    4. Skoglund, Annika & Leijon, Mats & Rehn, Alf & Lindahl, Marcus & Waters, Rafael, 2010. "On the physics of power, energy and economics of renewable electric energy sources - Part II," Renewable Energy, Elsevier, vol. 35(8), pages 1735-1740.
    5. Iglesias, G. & Carballo, R., 2011. "Wave resource in El Hierro—an island towards energy self-sufficiency," Renewable Energy, Elsevier, vol. 36(2), pages 689-698.
    6. Pasquale Contestabile & Enrico Di Lauro & Mariano Buccino & Diego Vicinanza, 2016. "Economic Assessment of Overtopping BReakwater for Energy Conversion (OBREC): A Case Study in Western Australia," Sustainability, MDPI, vol. 9(1), pages 1-28, December.
    7. Ahmad, Salman & Tahar, Razman Mat, 2014. "Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia," Renewable Energy, Elsevier, vol. 63(C), pages 458-466.
    8. Yanine, Franco F. & Sauma, Enzo E., 2013. "Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 60-95.
    9. Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2017. "Solar energy deployment for sustainable future of India: Hybrid SWOC-AHP analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1138-1151.
    10. Gökgöz, Fazıl & Güvercin, Mustafa Taylan, 2018. "Energy security and renewable energy efficiency in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 226-239.
    11. Lo Re, Carlo & Manno, Giorgio & Basile, Mirko & Ciraolo, Giuseppe, 2022. "The opportunity of using wave energy converters in a Mediterranean hot spot," Renewable Energy, Elsevier, vol. 196(C), pages 1095-1114.
    12. Svetlana Vladislavlevna Lobova & Aleksei Valentinovich Bogoviz & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2019. "The Fuel and Energy Complex of Russia: Analyzing Energy Efficiency Policies at the Federal Level," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 205-211.
    13. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    14. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    15. Piotr Siemiątkowski & Patryk Tomaszewski & Joanna Marszałek-Kawa & Janusz Gierszewski, 2020. "The Financing of Renewable Energy Sources and the Level of Sustainable Development of Poland’s Provinces in the Area of Environmental Order," Energies, MDPI, vol. 13(21), pages 1-19, October.
    16. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Keun-Seob Choi & Jeong-Dong Lee & Chulwoo Baek, 2016. "Growth of De Alio and De Novo firms in the new and renewable energy industry," Industry and Innovation, Taylor & Francis Journals, vol. 23(4), pages 295-312, May.
    18. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    19. Taran Loper & Victoria L. Crittenden, 2017. "Energy Security: Shaping The Consumer Decision Making Process In Emerging Economies," Organizations and Markets in Emerging Economies, Faculty of Economics, Vilnius University, vol. 8(1).
    20. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:245:y:2012:i:c:p:121-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.