IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v179y2019icp13-15.html
   My bibliography  Save this article

A numerical equivalence result for generalized method of moments

Author

Listed:
  • Phillips, Robert F.

Abstract

This note shows when a GMM estimator has an alternative representation as a 2SLS estimator after data filtering. The result exploits a weaker condition than the conditions earlier invariance to transformation results use and applies to panel and system estimation.

Suggested Citation

  • Phillips, Robert F., 2019. "A numerical equivalence result for generalized method of moments," Economics Letters, Elsevier, vol. 179(C), pages 13-15.
  • Handle: RePEc:eee:ecolet:v:179:y:2019:i:c:p:13-15
    DOI: 10.1016/j.econlet.2019.03.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016517651930093X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2019.03.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    2. Keane, Michael P & Runkle, David E, 1992. "On the Estimation of Panel-Data Models with Serial Correlation When Instruments Are Not Strictly Exogenous: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(1), pages 26-29, January.
    3. Robert F. Phillips, 2018. "Quantifying the Computational Advantage of Forward Orthogonal Deviations," Papers 1808.05995, arXiv.org.
    4. Keane, Michael P & Runkle, David E, 1992. "On the Estimation of Panel-Data Models with Serial Correlation When Instruments Are Not Strictly Exogenous," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(1), pages 1-9, January.
    5. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    6. Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert F. Phillips, 2020. "The equivalence of two-step first difference and forward orthogonal deviations GMM," Economics Bulletin, AccessEcon, vol. 40(4), pages 2865-2871.
    2. Robert F. Phillips, 2022. "Forward Orthogonal Deviations GMM and the Absence of Large Sample Bias," Papers 2212.14075, arXiv.org, revised Jul 2024.
    3. Robert F. Phillips, 2020. "Quantifying the Advantages of Forward Orthogonal Deviations for Long Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 653-672, February.
    4. Robert F. Phillips, 2019. "A Comparison of First-Difference and Forward Orthogonal Deviations GMM," Papers 1907.12880, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert F. Phillips, 2020. "Quantifying the Advantages of Forward Orthogonal Deviations for Long Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 653-672, February.
    2. Hayakawa, Kazuhiko, 2019. "Alternative over-identifying restriction test in the GMM estimation of panel data models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 71-95.
    3. Badi H. Baltagi, 2021. "Dynamic Panel Data Models," Springer Texts in Business and Economics, in: Econometric Analysis of Panel Data, edition 6, chapter 0, pages 187-228, Springer.
    4. Hujer Reinhard & Rodrigues Paulo J. M. & Wolf Katja, 2008. "Dynamic Panel Data Models with Spatial Correlation," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(5-6), pages 612-629, October.
    5. De Blander, Rembert, 2020. "Iterative estimation correcting for error auto-correlation in short panels, applied to lagged dependent variable models," Econometrics and Statistics, Elsevier, vol. 15(C), pages 3-29.
    6. Okui, Ryo, 2009. "The optimal choice of moments in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 151(1), pages 1-16, July.
    7. Hahn, Jinyong, 1997. "Efficient estimation of panel data models with sequential moment restrictions," Journal of Econometrics, Elsevier, vol. 79(1), pages 1-21, July.
    8. Jacques Mairesse & Bronwyn H. Hall & Benoît Mulkay, 1999. "Firm-Level Investment in France and the United States: An Exploration of What We Have Learned in Twenty Years," Annals of Economics and Statistics, GENES, issue 55-56, pages 27-67.
    9. Hsiao, Cheng & Hashem Pesaran, M. & Kamil Tahmiscioglu, A., 2002. "Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods," Journal of Econometrics, Elsevier, vol. 109(1), pages 107-150, July.
    10. Kin Sibanda & Rufaro Garidzirai & Farai Mushonga & Dorcas Gonese, 2023. "Natural Resource Rents, Institutional Quality, and Environmental Degradation in Resource-Rich Sub-Saharan African Countries," Sustainability, MDPI, vol. 15(2), pages 1-11, January.
    11. Antonio Ruiz Porras, 2016. "La investigación econométrica mediante paneles de datos:historia, modelos y usos en México," Archivos Revista Economía y Política., Facultad de Ciencias Económicas y Administrativas, Universidad de Cuenca., vol. 24, pages 11-32, Julio.
    12. Hall, B. & Mairesse, J. & Branstetter, L. & Crepon, B., 1998. "Does Cash Flow cause Investment and R&D: An Exploration Using Panel Data for French, Japanese, and United States Scientific Firms," Economics Papers 142, Economics Group, Nuffield College, University of Oxford.
    13. Kazuhiko Hayakawa & M. Hashem Pesaran, 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models," Working Paper series 38_12, Rimini Centre for Economic Analysis.
    14. Doran, Howard E. & Schmidt, Peter, 2006. "GMM estimators with improved finite sample properties using principal components of the weighting matrix, with an application to the dynamic panel data model," Journal of Econometrics, Elsevier, vol. 133(1), pages 387-409, July.
    15. Donald W.K. Andrews & Biao Lu, 1999. "Consistent Model and Moment Selection Criteria for GMM Estimation with Applications to Dynamic Panel Data Models," Cowles Foundation Discussion Papers 1233, Cowles Foundation for Research in Economics, Yale University.
    16. Trapani, Lorenzo & Urga, Giovanni, 2009. "Optimal forecasting with heterogeneous panels: A Monte Carlo study," International Journal of Forecasting, Elsevier, vol. 25(3), pages 567-586, July.
    17. Hayakawa, Kazuhiko & Pesaran, M. Hashem, 2015. "Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 188(1), pages 111-134.
    18. Chamberlain, Gary, 2022. "Feedback in panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 4-20.
    19. Robert F. Phillips, 2019. "A Comparison of First-Difference and Forward Orthogonal Deviations GMM," Papers 1907.12880, arXiv.org.
    20. Andrews, Donald W. K. & Lu, Biao, 2001. "Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models," Journal of Econometrics, Elsevier, vol. 101(1), pages 123-164, March.

    More about this item

    Keywords

    Forward orthogonal demeaning; Forward orthogonal deviations; Cholesky factorization; Two-stage least squares;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:179:y:2019:i:c:p:13-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.