IDEAS home Printed from
   My bibliography  Save this article

Global identification of the semiparametric Box-Cox model


  • Komunjer, Ivana


We show identifiability of the Box-Cox model under restrictions that do not require the disturbance U to be independent or mean independent of the explanatory variable X. Our restrictions are on the support of the distribution of U given X.

Suggested Citation

  • Komunjer, Ivana, 2009. "Global identification of the semiparametric Box-Cox model," Economics Letters, Elsevier, vol. 104(2), pages 53-56, August.
  • Handle: RePEc:eee:ecolet:v:104:y:2009:i:2:p:53-56

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Roehrig, Charles S, 1988. "Conditions for Identification in Nonparametric and Parametic Models," Econometrica, Econometric Society, vol. 56(2), pages 433-447, March.
    2. N.E. Savin & Allan H. W├╝rtz, 2002. "Testing the Semiparametric Box-Cox Model with Bootstrap," CAM Working Papers 2002-08, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
    3. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
    4. Komunjer, Ivana, 2007. "Global Identification In Nonlinear Semiparametric Models," University of California at San Diego, Economics Working Paper Series qt8dk0n386, Department of Economics, UC San Diego.
    5. Powell, James L., 1996. "Rescaled methods-of-moments estimation for the Box-Cox regression model," Economics Letters, Elsevier, vol. 51(3), pages 259-265, June.
    6. Khazzoom, J. Daniel, 1989. "A note on the application of the nonlinear two-stage least-squares estimator to a Box-Cox-transformed model," Journal of Econometrics, Elsevier, vol. 42(3), pages 377-379, November.
    7. Foster A. M. & Tian L. & Wei L. J., 2001. "Estimation for the Box-Cox Transformation Model Without Assuming Parametric Error Distribution," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1097-1101, September.
    8. Amemiya, Takeshi & Powell, James L., 1981. "A comparison of the Box-Cox maximum likelihood estimator and the non-linear two-stage least squares estimator," Journal of Econometrics, Elsevier, vol. 17(3), pages 351-381, December.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:104:y:2009:i:2:p:53-56. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.