IDEAS home Printed from
   My bibliography  Save this article

The total costs of soil degradation in England and Wales


  • Graves, A.R.
  • Morris, J.
  • Deeks, L.K.
  • Rickson, R.J.
  • Kibblewhite, M.G.
  • Harris, J.A.
  • Farewell, T.S.
  • Truckle, I.


There is growing concern that the way that soils are used often results in their degradation, giving rise to significant costs, both to direct users of soils and to society as a whole. This paper develops and uses an approach to derive the total economic cost of soil degradation in England and Wales. An estimate was made of degradation costs at the national scale for dominant combinations of land cover and soils, defined as ‘soilscapes’. An ecosystem services framework was used to assess how degradation affects the capacity of soils to support a range of ‘final goods’, distinguishing between on-site and off-site costs, and market and non-market effects. Quantifiable soil degradation costs ranged between £0.9 bn and £1.4 bn per year, with a central estimate of £1.2 bn, mainly linked to loss of organic content of soils (47% of total cost), compaction (39%) and erosion (12%). Eighty percent of costs occur off-site and, as such, are often of limited concern to those whose actions may be causing soil degradation. The findings confirm that control of soil degradation has implications for a number of key policy areas such as flood risk management and climate change mitigation.

Suggested Citation

  • Graves, A.R. & Morris, J. & Deeks, L.K. & Rickson, R.J. & Kibblewhite, M.G. & Harris, J.A. & Farewell, T.S. & Truckle, I., 2015. "The total costs of soil degradation in England and Wales," Ecological Economics, Elsevier, vol. 119(C), pages 399-413.
  • Handle: RePEc:eee:ecolec:v:119:y:2015:i:c:p:399-413
    DOI: 10.1016/j.ecolecon.2015.07.026

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Dominati, E. & Mackay, A. & Green, S. & Patterson, M., 2014. "A soil change-based methodology for the quantification and valuation of ecosystem services from agro-ecosystems: A case study of pastoral agriculture in New Zealand," Ecological Economics, Elsevier, vol. 100(C), pages 119-129.
    2. Pretty, J. N. & Brett, C. & Gee, D. & Hine, R. E. & Mason, C. F. & Morison, J. I. L. & Raven, H. & Rayment, M. D. & van der Bijl, G., 2000. "An assessment of the total external costs of UK agriculture," Agricultural Systems, Elsevier, vol. 65(2), pages 113-136, August.
    3. J E Annetts & E Audsley, 2002. "Multiple objective linear programming for environmental farm planning," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(9), pages 933-943, September.
    4. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, December.
    5. Dominati, Estelle & Patterson, Murray & Mackay, Alec, 2010. "A framework for classifying and quantifying the natural capital and ecosystem services of soils," Ecological Economics, Elsevier, vol. 69(9), pages 1858-1868, July.
    6. Gómez-Baggethun, Erik & Barton, David N., 2013. "Classifying and valuing ecosystem services for urban planning," Ecological Economics, Elsevier, vol. 86(C), pages 235-245.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Andreas Eder, 2022. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Journal of Productivity Analysis, Springer, vol. 57(2), pages 157-176, April.
    2. Leonhardt, Heidi & Penker, Marianne & Salhofer, Klaus, 2019. "Do farmers care about rented land? A multi-method study on land tenure and soil conservation," Land Use Policy, Elsevier, vol. 82(C), pages 228-239.
    3. Ranjan, Ram, 2019. "A forestry-based PES mechanism for enhancing the sustainability of Chilika Lake through reduced siltation loading," Forest Policy and Economics, Elsevier, vol. 106(C), pages 1-1.
    4. Mulazzani, Rodrigo Pivoto & Gubiani, Paulo Ivonir & Zanon, Alencar Junior & Drescher, Marta Sandra & Schenato, Ricardo Bergamo & Girardello, Vitor Cauduro, 2022. "Impact of soil compaction on 30-year soybean yield simulated with CROPGRO-DSSAT," Agricultural Systems, Elsevier, vol. 203(C).
    5. Arunima Sarkar Basu & Francesco Pilla & Srikanta Sannigrahi & Rémi Gengembre & Antoine Guilland & Bidroha Basu, 2021. "Theoretical Framework to Assess Green Roof Performance in Mitigating Urban Flooding as a Potential Nature-Based Solution," Sustainability, MDPI, vol. 13(23), pages 1-34, November.
    6. Vera V. Yurak & Margarita N. Ignatyeva & Aleksey V. Dushin, 2020. "Valuation of ecosystem services in a region: A review of the international experience," Journal of New Economy, Ural State University of Economics, vol. 21(4), pages 79-103, December.
    7. Paavola, Jouni & Primmer, Eeva, 2019. "Governing the Provision of Insurance Value From Ecosystems," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    8. Eder, Andreas & Salhofer, Klaus & Scheichel, Eva, 2021. "Land tenure, soil conservation, and farm performance: An eco-efficiency analysis of Austrian crop farms," Ecological Economics, Elsevier, vol. 180(C).
    9. Leonhardt, Heidi, 2017. "Tenancy and Soil Conservation in Austria: Analysing the Crop Choice of Farmers," 57th Annual Conference, Weihenstephan, Germany, September 13-15, 2017 262006, German Association of Agricultural Economists (GEWISOLA).
    10. Mahon, N. & Crute, I. & Di Bonito, M. & Simmons, E.A. & Islam, M.M., 2018. "Towards a broad-based and holistic framework of Sustainable Intensification indicators," Land Use Policy, Elsevier, vol. 77(C), pages 576-597.
    11. Bořivoj Šarapatka & Marek Bednář, 2022. "Rainfall Erosivity Impact on Sustainable Management of Agricultural Land in Changing Climate Conditions," Land, MDPI, vol. 11(4), pages 1-11, March.
    12. repec:zbw:inwedp:752021 is not listed on IDEAS
    13. Rares Halbac-Cotoara-Zamfir & Andrea Colantoni & Enrico Maria Mosconi & Stefano Poponi & Simona Fortunati & Luca Salvati & Filippo Gambella, 2020. "From Historical Narratives to Circular Economy: De-Complexifying the “Desertification” Debate," IJERPH, MDPI, vol. 17(15), pages 1-18, July.
    14. Andreas Eder, 2021. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Working Papers 752021, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    15. Patault, Edouard & Ledun, Jérôme & Landemaine, Valentin & Soulignac, Arnaud & Richet, Jean-Baptiste & Fournier, Matthieu & Ouvry, Jean-François & Cerdan, Olivier & Laignel, Benoit, 2021. "Analysis of off-site economic costs induced by runoff and soil erosion: Example of two areas in the northwestern European loess belt for the last two decades (Normandy, France)," Land Use Policy, Elsevier, vol. 108(C).
    16. Wen, Xiaojie & Yao, Shunbo & Sauer, Johannes, 2022. "Shadow prices and abatement cost of soil erosion in Shaanxi Province, China: Convex expectile regression approach," Ecological Economics, Elsevier, vol. 201(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    2. Schon, N.L. & Dominati, E.J., 2020. "Valuing earthworm contribution to ecosystem services delivery," Ecosystem Services, Elsevier, vol. 43(C).
    3. Brady, Mark & Hedlund, Katarina & Cong, Rong-Gang & Hemerik, Lia & Hotes, Stefan & Machado, Stephen & Mattsson, Lennart & Schulz, Elke & Thomsen, Ingrid K., 2015. "Valuing Supporting Soil Ecosystem Services in Agriculture: a Natural Capital Approach," MPRA Paper 112303, University Library of Munich, Germany.
    4. Bhim B Ghaley & Harpinder S Sandhu & John R Porter, 2015. "Relationship between C:N/C:O Stoichiometry and Ecosystem Services in Managed Production Systems," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
    5. Greenhalgh, S. & Samarasinghe, O. & Curran-Cournane, F. & Wright, W. & Brown, P., 2017. "Using ecosystem services to underpin cost–benefit analysis: Is it a way to protect finite soil resources?," Ecosystem Services, Elsevier, vol. 27(PA), pages 1-14.
    6. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    7. Mark V. Brady & Jordan Hristov & Fredrik Wilhelmsson & Katarina Hedlund, 2019. "Roadmap for Valuing Soil Ecosystem Services to Inform Multi-Level Decision-Making in Agriculture," Sustainability, MDPI, vol. 11(19), pages 1-20, September.
    8. van den Belt, Marjan & Blake, Daniella, 2014. "Ecosystem services in new Zealand agro-ecosystems: A literature review," Ecosystem Services, Elsevier, vol. 9(C), pages 115-132.
    9. Yamaguchi, Rintaro & Shah, Payal, 2020. "Spatial discounting of ecosystem services," Resource and Energy Economics, Elsevier, vol. 62(C).
    10. Choquet, Pauline & Gabrielle, Benoit & Chalhoub, Maha & Michelin, Joël & Sauzet, Ophélie & Scammacca, Ottone & Garnier, Patricia & Baveye, Philippe C. & Montagne, David, 2021. "Comparison of empirical and process-based modelling to quantify soil-supported ecosystem services on the Saclay plateau (France)," Ecosystem Services, Elsevier, vol. 50(C).
    11. Fengjiao Ma & A. Egrinya Eneji & Jintong Liu, 2014. "Understanding Relationships among Agro-Ecosystem Services Based on Emergy Analysis in Luancheng County, North China," Sustainability, MDPI, vol. 6(12), pages 1-20, November.
    12. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur, 2016. "Classification and valuation of soil ecosystem services," Agricultural Systems, Elsevier, vol. 145(C), pages 24-38.
    13. Dominati, E.J. & Mackay, A. & Lynch, B. & Heath, N. & Millner, I., 2014. "An ecosystem services approach to the quantification of shallow mass movement erosion and the value of soil conservation practices," Ecosystem Services, Elsevier, vol. 9(C), pages 204-215.
    14. Johannes Rüdisser & Erich Tasser & Thomas Peham & Erwin Meyer & Ulrike Tappeiner, 2020. "Hidden Engineers and Service Providers: Earthworms in Agricultural Land-Use Types of South Tyrol, Italy," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
    15. Long Zhou & Yao Wu & Tom Woodfin & Rong Zhu & Tian Chen, 2018. "An Approach to Evaluate Comprehensive Plan and Identify Priority Lands for Future Land Use Development to Conserve More Ecological Values," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
    16. Silva-Olaya, Adriana M. & Ortíz-Morea, Fausto A. & España-Cetina, Gina P. & Olaya-Montes, Andrés & Grados, Daniel & Gasparatos, Alexandros & Cherubin, Mauricio Roberto, 2022. "Composite index for soil-related ecosystem services assessment: Insights from rainforest-pasture transitions in the Colombian Amazon," Ecosystem Services, Elsevier, vol. 57(C).
    17. Richard J. Thomas & Emmanuelle Quillérou & Naomi Stewart, 2013. "The rewards of investing in sustainable land management," Working Papers hal-01954823, HAL.
    18. Saarikoski, Heli & Jax, Kurt & Harrison, Paula A. & Primmer, Eeva & Barton, David N. & Mononen, Laura & Vihervaara, Petteri & Furman, Eeva, 2015. "Exploring operational ecosystem service definitions: The case of boreal forests," Ecosystem Services, Elsevier, vol. 14(C), pages 144-157.
    19. Denise Boehnke & Alice Krehl & Kai Mörmann & Rebekka Volk & Thomas Lützkendorf & Elias Naber & Ronja Becker & Stefan Norra, 2022. "Mapping Urban Green and Its Ecosystem Services at Microscale—A Methodological Approach for Climate Adaptation and Biodiversity," Sustainability, MDPI, vol. 14(15), pages 1-26, July.
    20. Stéphane Hallegatte, 2008. "A Proposal for a New Prescriptive Discounting Scheme: The Intergenerational Discount Rate," Working Papers 2008.47, Fondazione Eni Enrico Mattei.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:119:y:2015:i:c:p:399-413. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.