IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2020i1p312-d473114.html
   My bibliography  Save this article

Hidden Engineers and Service Providers: Earthworms in Agricultural Land-Use Types of South Tyrol, Italy

Author

Listed:
  • Johannes Rüdisser

    (Department of Ecology, University of Innsbruck, Sternwartestr. 15, A6020 Innsbruck, Austria)

  • Erich Tasser

    (Institute for Alpine Environment, Eurac Research, Viale Druso 1, 39100 Bozen/Bolzano, Italy)

  • Thomas Peham

    (Department of Ecology, University of Innsbruck, Sternwartestr. 15, A6020 Innsbruck, Austria)

  • Erwin Meyer

    (Department of Ecology, University of Innsbruck, Sternwartestr. 15, A6020 Innsbruck, Austria
    E.M. deceased in June 2020.)

  • Ulrike Tappeiner

    (Department of Ecology, University of Innsbruck, Sternwartestr. 15, A6020 Innsbruck, Austria
    Institute for Alpine Environment, Eurac Research, Viale Druso 1, 39100 Bozen/Bolzano, Italy)

Abstract

Earthworm activities affect the provision of many ecosystem services. Land use can strongly influence earthworm communities and, hence related soil functions. We assessed earthworm biomass, abundance, and species composition on grasslands, apple orchards, and vineyards in the context of an existing sustainability assessment tool in South Tyrol, Italy. A stratified sampling campaign revealed significant differences in earthworm distribution. We found 21 to 700 individuals m −2 in grasslands and surprisingly abundant earthworm communities in apple orchards (14 to 382 individuals m −2 ). Results for vineyards were ambiguous with no or very low abundance in 47% of the vineyards and a maximum of 396 individuals m −2 . Mesohumic endogeic species were the most abundant functional group observed (75% of the biomass in grasslands, 50% in apple orchards and vineyards). Aporrectodea caliginosa was the most abundant endogeic species, Lumbricus rubellus the dominant polyhumic endogeic species in all land-use types. We estimated a total of 34,900 t of earthworm biomass on agricultural areas in South Tyrol corresponding to a total value of EUR 872 million. Although soil quality is a complex concept that cannot be captured with a single indicator, earthworms are suitable and feasible indicators for sustainable soil use at the landscape scale.

Suggested Citation

  • Johannes Rüdisser & Erich Tasser & Thomas Peham & Erwin Meyer & Ulrike Tappeiner, 2020. "Hidden Engineers and Service Providers: Earthworms in Agricultural Land-Use Types of South Tyrol, Italy," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:312-:d:473114
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Crossman, Neville D. & Burkhard, Benjamin & Nedkov, Stoyan & Willemen, Louise & Petz, Katalin & Palomo, Ignacio & Drakou, Evangelia G. & Martín-Lopez, Berta & McPhearson, Timon & Boyanova, Kremena & , 2013. "A blueprint for mapping and modelling ecosystem services," Ecosystem Services, Elsevier, vol. 4(C), pages 4-14.
    2. Barrios, Edmundo, 2007. "Soil biota, ecosystem services and land productivity," Ecological Economics, Elsevier, vol. 64(2), pages 269-285, December.
    3. Dominati, E. & Mackay, A. & Green, S. & Patterson, M., 2014. "A soil change-based methodology for the quantification and valuation of ecosystem services from agro-ecosystems: A case study of pastoral agriculture in New Zealand," Ecological Economics, Elsevier, vol. 100(C), pages 119-129.
    4. Sandhu, Harpinder S. & Wratten, Stephen D. & Cullen, Ross & Case, Brad, 2008. "The future of farming: The value of ecosystem services in conventional and organic arable land. An experimental approach," Ecological Economics, Elsevier, vol. 64(4), pages 835-848, February.
    5. Boyd, James & Banzhaf, Spencer, 2007. "What are ecosystem services? The need for standardized environmental accounting units," Ecological Economics, Elsevier, vol. 63(2-3), pages 616-626, August.
    6. Dominati, Estelle & Patterson, Murray & Mackay, Alec, 2010. "A framework for classifying and quantifying the natural capital and ecosystem services of soils," Ecological Economics, Elsevier, vol. 69(9), pages 1858-1868, July.
    7. Bryan S. Griffiths & Jack Faber & Jaap Bloem, 2018. "Applying Soil Health Indicators to Encourage Sustainable Soil Use: The Transition from Scientific Study to Practical Application," Sustainability, MDPI, vol. 10(9), pages 1-14, August.
    8. Pascual, Unai & Termansen, Mette & Hedlund, Katarina & Brussaard, Lijbert & Faber, Jack H. & Foudi, Sébastien & Lemanceau, Philippe & Jørgensen, Sisse Liv, 2015. "On the value of soil biodiversity and ecosystem services," Ecosystem Services, Elsevier, vol. 15(C), pages 11-18.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van den Belt, Marjan & Blake, Daniella, 2014. "Ecosystem services in new Zealand agro-ecosystems: A literature review," Ecosystem Services, Elsevier, vol. 9(C), pages 115-132.
    2. Fengjiao Ma & A. Egrinya Eneji & Jintong Liu, 2014. "Understanding Relationships among Agro-Ecosystem Services Based on Emergy Analysis in Luancheng County, North China," Sustainability, MDPI, vol. 6(12), pages 1-20, November.
    3. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur, 2016. "Classification and valuation of soil ecosystem services," Agricultural Systems, Elsevier, vol. 145(C), pages 24-38.
    4. Schon, N.L. & Dominati, E.J., 2020. "Valuing earthworm contribution to ecosystem services delivery," Ecosystem Services, Elsevier, vol. 43(C).
    5. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    6. Bhim B Ghaley & Harpinder S Sandhu & John R Porter, 2015. "Relationship between C:N/C:O Stoichiometry and Ecosystem Services in Managed Production Systems," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
    7. Dominati, Estelle & Patterson, Murray & Mackay, Alec, 2010. "A framework for classifying and quantifying the natural capital and ecosystem services of soils," Ecological Economics, Elsevier, vol. 69(9), pages 1858-1868, July.
    8. Mark V. Brady & Jordan Hristov & Fredrik Wilhelmsson & Katarina Hedlund, 2019. "Roadmap for Valuing Soil Ecosystem Services to Inform Multi-Level Decision-Making in Agriculture," Sustainability, MDPI, vol. 11(19), pages 1-20, September.
    9. Dominati, E. & Mackay, A. & Green, S. & Patterson, M., 2014. "A soil change-based methodology for the quantification and valuation of ecosystem services from agro-ecosystems: A case study of pastoral agriculture in New Zealand," Ecological Economics, Elsevier, vol. 100(C), pages 119-129.
    10. Choquet, Pauline & Gabrielle, Benoit & Chalhoub, Maha & Michelin, Joël & Sauzet, Ophélie & Scammacca, Ottone & Garnier, Patricia & Baveye, Philippe C. & Montagne, David, 2021. "Comparison of empirical and process-based modelling to quantify soil-supported ecosystem services on the Saclay plateau (France)," Ecosystem Services, Elsevier, vol. 50(C).
    11. Bartosz Bartkowski & Bernd Hansjürgens & Stefan Möckel & Stephan Bartke, 2018. "Institutional Economics of Agricultural Soil Ecosystem Services," Sustainability, MDPI, vol. 10(7), pages 1-14, July.
    12. Liu, Wenjing & Wang, Jingsheng & Li, Chao & Chen, Baoxiong & Sun, Yufang, 2019. "Using Bibliometric Analysis to Understand the Recent Progress in Agroecosystem Services Research," Ecological Economics, Elsevier, vol. 156(C), pages 293-305.
    13. Dominati, Estelle J. & Mackay, Alec D. & Rendel, John M. & Wall, Andrew & Norton, David A. & Pannell, Jennifer & Devantier, Brian, 2021. "Farm scale assessment of the impacts of biodiversity enhancement on the financial and environmental performance of mixed livestock farms in New Zealand," Agricultural Systems, Elsevier, vol. 187(C).
    14. Edens, Bram & Hein, Lars, 2013. "Towards a consistent approach for ecosystem accounting," Ecological Economics, Elsevier, vol. 90(C), pages 41-52.
    15. Pascual, Unai & Termansen, Mette & Hedlund, Katarina & Brussaard, Lijbert & Faber, Jack H. & Foudi, Sébastien & Lemanceau, Philippe & Jørgensen, Sisse Liv, 2015. "On the value of soil biodiversity and ecosystem services," Ecosystem Services, Elsevier, vol. 15(C), pages 11-18.
    16. Drakou, E.G. & Crossman, N.D. & Willemen, L. & Burkhard, B. & Palomo, I. & Maes, J. & Peedell, S., 2015. "A visualization and data-sharing tool for ecosystem service maps: Lessons learnt, challenges and the way forward," Ecosystem Services, Elsevier, vol. 13(C), pages 134-140.
    17. Qenani-Petrela, Eivis & Noel, Jay E. & Mastin, Thomas, 2007. "A Benefit Transfer Approach to the Estimation of Agro-Ecosystems Services Benefits: A Case Study of Kern County, California," Research Project Reports 121605, California Polytechnic State University, San Luis Obispo, California Institute for the Study of Specialty Crops.
    18. Duy X. Tran & Diane Pearson & Alan Palmer & David Gray, 2020. "Developing a Landscape Design Approach for the Sustainable Land Management of Hill Country Farms in New Zealand," Land, MDPI, vol. 9(6), pages 1-29, June.
    19. Tammi, Ilpo & Mustajärvi, Kaisa & Rasinmäki, Jussi, 2017. "Integrating spatial valuation of ecosystem services into regional planning and development," Ecosystem Services, Elsevier, vol. 26(PB), pages 329-344.
    20. Chalhoub, Maha & Gabrielle, Benoit & Tournebize, Julien & Chaumont, Cédric & Maugis, Pascal & Girardin, Cyril & Montagne, David & Baveye, Philippe C. & Garnier, Patricia, 2020. "Direct measurement of selected soil services in a drained agricultural field: Methodology development and case study in Saclay (France)," Ecosystem Services, Elsevier, vol. 42(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:312-:d:473114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.