IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v27y2002i2p283-301.html
   My bibliography  Save this article

On infinite-horizon minimum-cost hedging under cone constraints

Author

Listed:
  • Huang, Kevin X. D.

Abstract

We prove there exists and analyze a strategy that minimizes the cost of hedging a liability stream in infinite-horizon incomplete security markets with a type of constraints that feasible portfolio strategies form a convex cone. We provide a theorem that extends Stiemke Lemma to over cone domains and we use the result to construct a series of primal-dual problems. Applying stochastic duality theory, dynamic programming technique and the theory of convex analysis to the dual formulation, we decompose the infinite-horizon dynamic hedging problem into one-period static hedging problems such that optimal portfolios in different events can be solved for independently.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Huang, Kevin X. D., 2002. "On infinite-horizon minimum-cost hedging under cone constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 27(2), pages 283-301, December.
  • Handle: RePEc:eee:dyncon:v:27:y:2002:i:2:p:283-301
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(01)00037-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/5630 is not listed on IDEAS
    2. repec:crs:wpaper:9513 is not listed on IDEAS
    3. Manuel S. Santos & Michael Woodford, 1997. "Rational Asset Pricing Bubbles," Econometrica, Econometric Society, vol. 65(1), pages 19-58, January.
    4. Kevin X.D. Huang & Jan Werner, 2000. "Asset price bubbles in Arrow-Debreu and sequential equilibrium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 15(2), pages 253-278.
    5. Aliprantis, C. D. & Brown, D. J. & Werner, J., 2000. "Minimum-cost portfolio insurance," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1703-1719, October.
    6. Edirisinghe, Chanaka & Naik, Vasanttilak & Uppal, Raman, 1993. "Optimal Replication of Options with Transactions Costs and Trading Restrictions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(01), pages 117-138, March.
    7. Shiller, Robert J, 1993. " Measuring Asset Values for Cash Settlement in Derivative Markets: Hedonic Repeated Measures Indices and Perpetual Futures," Journal of Finance, American Finance Association, vol. 48(3), pages 911-931, July.
    8. Kevin Huang, "undated". "Valuation and asset pricing in infinite-horizon sequential markets with portfolio constraints," Working Papers 2000-09, Utah State University, Department of Economics.
    9. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    10. Taggart, Robert A, Jr, 1977. "A Model of Corporate Financing Decisions," Journal of Finance, American Finance Association, vol. 32(5), pages 1467-1484, December.
    11. Bernard Bensaid & Jean-Philippe Lesne & Henri Pagès & José Scheinkman, 1992. "Derivative Asset Pricing With Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 63-86.
    12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    13. Marsh, Paul, 1982. " The Choice between Equity and Debt: An Empirical Study," Journal of Finance, American Finance Association, vol. 37(1), pages 121-144, March.
    14. George M. Constantinides, 2005. "Capital Market Equilibrium with Transaction Costs," World Scientific Book Chapters,in: Theory Of Valuation, chapter 7, pages 207-227 World Scientific Publishing Co. Pte. Ltd..
    15. Broadie, Mark & Cvitanic, Jaksa & Soner, H Mete, 1998. "Optimal Replication of Contingent Claims under Portfolio Constraints," Review of Financial Studies, Society for Financial Studies, vol. 11(1), pages 59-79.
    16. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    17. Luttmer, Erzo G J, 1996. "Asset Pricing in Economies with Frictions," Econometrica, Econometric Society, vol. 64(6), pages 1439-1467, November.
    18. Dumas, Bernard & Luciano, Elisa, 1991. " An Exact Solution to a Dynamic Portfolio Choice Problem under Transactions Costs," Journal of Finance, American Finance Association, vol. 46(2), pages 577-595, June.
    19. Naik, Vasanttilak & Uppal, Raman, 1994. "Leverage Constraints and the Optimal Hedging of Stock and Bond Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(02), pages 199-222, June.
    20. Jouini Elyes & Kallal Hedi, 1995. "Martingales and Arbitrage in Securities Markets with Transaction Costs," Journal of Economic Theory, Elsevier, vol. 66(1), pages 178-197, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:jetheo:v:173:y:2018:i:c:p:257-288 is not listed on IDEAS
    2. Bidian, Florin, 2015. "Portfolio constraints, differences in beliefs and bubbles," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 317-326.
    3. Chen, Yingshan & Dai, Min & Xu, Jing & Xu, Mingyu, 2015. "Superhedging under ratio constraint," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 250-264.
    4. Baccara, Mariagiovanna & Battauz, Anna & Ortu, Fulvio, 2006. "Effective securities in arbitrage-free markets with bid-ask spreads at liquidation: a linear programming characterization," Journal of Economic Dynamics and Control, Elsevier, vol. 30(1), pages 55-79, January.

    More about this item

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G20 - Financial Economics - - Financial Institutions and Services - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:27:y:2002:i:2:p:283-301. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jedc .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.