IDEAS home Printed from
   My bibliography  Save this article

Model-averaged Wald confidence intervals


  • Turek, Daniel
  • Fletcher, David


The process of model averaging has become increasingly popular as a method for performing inference in the presence of model uncertainty. In the frequentist setting, a model-averaged estimate of a parameter is calculated as the weighted sum of single-model estimates, often using weights derived from an information criterion such as AIC or BIC. A standard method for calculating a model-averaged confidence interval is to use a Wald interval centered around the model-averaged estimate. We propose a new method for construction of a model-averaged Wald confidence interval, based on the idea of model averaging tail areas of the sampling distributions of the single-model estimates. We use simulation to compare the performance of the new method and existing methods, in terms of coverage rate and interval width. The new method consistently outperforms existing methods in terms of coverage, often for little increase in the interval width. We also consider choice of model weights, and find that AIC weights are preferable to either AICc or BIC weights in terms of coverage.

Suggested Citation

  • Turek, Daniel & Fletcher, David, 2012. "Model-averaged Wald confidence intervals," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2809-2815.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:9:p:2809-2815
    DOI: 10.1016/j.csda.2012.03.002

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Fletcher, David & Dillingham, Peter W., 2011. "Model-averaged confidence intervals for factorial experiments," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3041-3048, November.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Paul Kabaila & A. H. Welsh & Waruni Abeysekera, 2016. "Model-Averaged Confidence Intervals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 35-48, March.
    2. Wei Yu & Wangli Xu & Lixing Zhu, 2014. "Transformation-based model averaged tail area inference," Computational Statistics, Springer, vol. 29(6), pages 1713-1726, December.
    3. Schomaker, Michael & Heumann, Christian, 2014. "Model selection and model averaging after multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 758-770.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:9:p:2809-2815. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.