IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Model-averaged Wald confidence intervals

Listed author(s):
  • Turek, Daniel
  • Fletcher, David
Registered author(s):

    The process of model averaging has become increasingly popular as a method for performing inference in the presence of model uncertainty. In the frequentist setting, a model-averaged estimate of a parameter is calculated as the weighted sum of single-model estimates, often using weights derived from an information criterion such as AIC or BIC. A standard method for calculating a model-averaged confidence interval is to use a Wald interval centered around the model-averaged estimate. We propose a new method for construction of a model-averaged Wald confidence interval, based on the idea of model averaging tail areas of the sampling distributions of the single-model estimates. We use simulation to compare the performance of the new method and existing methods, in terms of coverage rate and interval width. The new method consistently outperforms existing methods in terms of coverage, often for little increase in the interval width. We also consider choice of model weights, and find that AIC weights are preferable to either AICc or BIC weights in terms of coverage.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 56 (2012)
    Issue (Month): 9 ()
    Pages: 2809-2815

    in new window

    Handle: RePEc:eee:csdana:v:56:y:2012:i:9:p:2809-2815
    DOI: 10.1016/j.csda.2012.03.002
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Fletcher, David & Dillingham, Peter W., 2011. "Model-averaged confidence intervals for factorial experiments," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3041-3048, November.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:9:p:2809-2815. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.