IDEAS home Printed from
   My bibliography  Save this article

The robust estimation method for a finite mixture of Poisson mixed-effect models


  • Xiang, Liming
  • Yau, Kelvin K.W.
  • Lee, Andy H.


When analyzing clustered count data derived from several latent subpopulations, the finite mixture of the Poisson mixed-effect model is an immediate strategy to model the underlying heterogeneity. Within the generalized linear mixed model framework, parameters in such a model are often estimated through the residual maximum likelihood estimation approach. However, the method is vulnerable to outliers. To develop robust estimators, the minimum Hellinger distance (MHD) estimation approach has been proposed by Xiang et al. (Xiang, L., Yau, K.K.W., Lee, A.H., Hui, Y.V., 2008. Minimum Hellinger distance estimation for k-component Poisson mixture with random effects. Biometrics 64, 508–518) with the random effects following a normal distribution. In some circumstances, there is little information available on the joint distributional form of the random effects. Without prescribing a parametric form for the random effects distribution, we consider embedding the non-parametric maximum likelihood (NPML) approach within the MHD estimation to extend the robust estimation method for a finite mixture of Poisson mixed-effect models. The NPML estimation not only avoids the problem of numerical integration in deriving the MHD estimating equations, but also enhances the robustness characteristic because of its resistance to possible misspecification of the parametric distribution for the random effects. The performance of the new method is evaluated and compared with that of the existing MHD estimation using simulations. Application to analyze a real data set of recurrent urinary tract infections is illustrated.

Suggested Citation

  • Xiang, Liming & Yau, Kelvin K.W. & Lee, Andy H., 2012. "The robust estimation method for a finite mixture of Poisson mixed-effect models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1994-2005.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1994-2005 DOI: 10.1016/j.csda.2011.12.006

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Woo, Mi-Ja & Sriram, T.N., 2007. "Robust estimation of mixture complexity for count data," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4379-4392, May.
    2. Warwick, J., 2005. "A data-based method for selecting tuning parameters in minimum distance estimators," Computational Statistics & Data Analysis, Elsevier, vol. 48(3), pages 571-585, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Chee, Chew-Seng, 2017. "A mixture model-based nonparametric approach to estimating a count distribution," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 34-44.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1994-2005. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.