IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i12p4366-4380.html

Improved confidence regions based on Edgeworth expansions

Author

Listed:
  • Withers, Christopher S.
  • Nadarajah, Saralees

Abstract

Let ŵ be a consistent estimate of w in Rp satisfying the standard cumulant expansion in powers of n−1 with asymptotic covariance n−1V. Then n1/2(ŵ−w) has the standard Edgeworth expansion about Np(0,V). We obtain from this the Edgeworth expansions for Tn(V)=n(ŵ−w)′V−1(ŵ−w) about χp2 and for its Studentized version, Tn(V̂). So, we obtain a confidence region for w of level α+O(n−2).

Suggested Citation

  • Withers, Christopher S. & Nadarajah, Saralees, 2012. "Improved confidence regions based on Edgeworth expansions," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4366-4380.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:12:p:4366-4380
    DOI: 10.1016/j.csda.2012.03.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312001454
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.03.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Jin & Gupta, Arjun K., 2006. "Improved confidence regions for a mean vector under general conditions," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1051-1062, November.
    2. C. Withers, 1988. "Nonparametric confidence intervals for functions of several distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 40(4), pages 727-746, December.
    3. Kotz,Samuel & Nadarajah,Saralees, 2004. "Multivariate T-Distributions and Their Applications," Cambridge Books, Cambridge University Press, number 9780521826549, January.
    4. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kakizawa, Yoshihide, 2016. "Some integrals involving multivariate Hermite polynomials: Application to evaluating higher-order local powers," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 162-168.
    2. Claudia Furlan & Cinzia Mortarino, 2020. "Comparison among simultaneous confidence regions for nonlinear diffusion models," Computational Statistics, Springer, vol. 35(4), pages 1951-1991, December.
    3. C. S. Withers, 2024. "5th-Order Multivariate Edgeworth Expansions for Parametric Estimates," Mathematics, MDPI, vol. 12(6), pages 1-28, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & Gyorgy H. Terdik, 2021. "On Multivariate Skewness and Kurtosis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 607-644, August.
    2. Kim, Hyoung-Moon & Maadooliat, Mehdi & Arellano-Valle, Reinaldo B. & Genton, Marc G., 2016. "Skewed factor models using selection mechanisms," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 162-177.
    3. Kim, Hyoung-Moon & Genton, Marc G., 2011. "Characteristic functions of scale mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1105-1117, August.
    4. Tsung-I Lin & Pal Wu & Geoffrey McLachlan & Sharon Lee, 2015. "A robust factor analysis model using the restricted skew- $$t$$ t distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 510-531, September.
    5. Raúl Alejandro Morán-Vásquez & Edwin Zarrazola & Daya K. Nagar, 2022. "Some Statistical Aspects of the Truncated Multivariate Skew- t Distribution," Mathematics, MDPI, vol. 10(15), pages 1-14, August.
    6. Lucia Zanotto & Vladimir Canudas-Romo & Stefano Mazzuco, 2021. "A Mixture-Function Mortality Model: Illustration of the Evolution of Premature Mortality," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 1-27, March.
    7. Ferraz, V.R.S. & Moura, F.A.S., 2012. "Small area estimation using skew normal models," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2864-2874.
    8. Chen Tong & Peter Reinhard Hansen & Ilya Archakov, 2024. "Cluster GARCH," Papers 2406.06860, arXiv.org.
    9. Omid Karimi, 2024. "A Hamiltonian Monte Carlo EM algorithm for generalized linear mixed models with spatial skew latent variables," Statistical Papers, Springer, vol. 65(2), pages 1065-1084, April.
    10. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    11. Li, Baokun & Tian, Weizhong & Wang, Tonghui, 2018. "Remarks for the singular multivariate skew-normal distribution and its quadratic forms," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 105-112.
    12. Elisa Bocchialini & Demetrio Miloslavo Bova & Ilaria Colivicchi & Federica Ielasi, 2024. "Environmental-, Social-, and Governance-Oriented Pension Funds for Young Contributors: A Win–Win Option," Sustainability, MDPI, vol. 16(24), pages 1-19, December.
    13. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    14. Marco Minozzo & Luca Bagnato, 2021. "A unified skew‐normal geostatistical factor model," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    15. M. Alodat & M. AL-Rawwash, 2014. "The extended skew Gaussian process for regression," METRON, Springer;Sapienza Università di Roma, vol. 72(3), pages 317-330, October.
    16. Marco Minozzo, 2011. "On the existence of some skew normal stationary processes," Working Papers 20/2011, University of Verona, Department of Economics.
    17. Bernardi, Mauro, 2013. "Risk measures for skew normal mixtures," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1819-1824.
    18. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    19. Fang, B. Q., 2003. "The skew elliptical distributions and their quadratic forms," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 298-314, November.
    20. Katherine Elizabeth Castellano & Andrew Dean Ho, 2013. "Contrasting OLS and Quantile Regression Approaches to Student “Growth†Percentiles," Journal of Educational and Behavioral Statistics, , vol. 38(2), pages 190-215, April.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:12:p:4366-4380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.