Some edge correction methods for marked spatio-temporal point process models
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Mandal, A. & Huang, W.T. & Bhandari, S.K. & Basu, A., 2011. "Goodness-of-fit testing in growth curve models: A general approach based on finite differences," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1086-1098, February.
- Lu, Tong-Yu & Poon, Wai-Yin & Tsang, Yim-Fan, 2011. "Latent growth curve modeling for longitudinal ordinal responses with applications," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1488-1497, March.
- Veen, Alejandro & Schoenberg, Frederic P., 2008. "Estimation of SpaceTime Branching Process Models in Seismology Using an EMType Algorithm," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 614-624, June.
- Grabarnik, Pavel & Särkkä, Aila, 2009. "Modelling the spatial structure of forest stands by multivariate point processes with hierarchical interactions," Ecological Modelling, Elsevier, vol. 220(9), pages 1232-1240.
- Renshaw, Eric & Sarkka, Aila, 2001. "Gibbs point processes for studying the development of spatial-temporal stochastic processes," Computational Statistics & Data Analysis, Elsevier, vol. 36(1), pages 85-105, March.
- Sarkka, Aila & Renshaw, Eric, 2006. "The analysis of marked point patterns evolving through space and time," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1698-1718, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ottmar Cronie & Julia Jansson & Konstantinos Konstantinou, 2024. "Discussion of the Paper “Marked Spatial Point Processes: Current State and Extensions to Point Processes on Linear Networks”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(2), pages 379-388, June.
- Mohammad Ghorbani & Ottmar Cronie & Jorge Mateu & Jun Yu, 2021. "Functional marked point processes: a natural structure to unify spatio-temporal frameworks and to analyse dependent functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 529-568, September.
- Edith Gabriel, 2014. "Estimating Second-Order Characteristics of Inhomogeneous Spatio-Temporal Point Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 411-431, June.
- Redenbach, Claudia & Särkkä, Aila, 2013. "Parameter estimation for growth interaction processes using spatio-temporal information," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 672-683.
- O. Cronie & M. N. M. Van Lieshout, 2015. "A J -function for Inhomogeneous Spatio-temporal Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 562-579, June.
- Ottmar Cronie & Mehdi Moradi & Christophe A N Biscio, 2024. "A cross-validation-based statistical theory for point processes," Biometrika, Biometrika Trust, vol. 111(2), pages 625-641.
- Eckardt, Matthias & González, Jonatan A. & Mateu, Jorge, 2021. "Graphical modelling and partial characteristics for multitype and multivariate-marked spatio-temporal point processes," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ottmar Cronie & Julia Jansson & Konstantinos Konstantinou, 2024. "Discussion of the Paper “Marked Spatial Point Processes: Current State and Extensions to Point Processes on Linear Networks”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(2), pages 379-388, June.
- Frédéric Lavancier & Ronan Le Guével, 2021. "Spatial birth–death–move processes: Basic properties and estimation of their intensity functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 798-825, September.
- Redenbach, Claudia & Särkkä, Aila, 2013. "Parameter estimation for growth interaction processes using spatio-temporal information," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 672-683.
- Häbel, Henrike & Myllymäki, Mari & Pommerening, Arne, 2019. "New insights on the behaviour of alternative types of individual-based tree models for natural forests," Ecological Modelling, Elsevier, vol. 406(C), pages 23-32.
- Pommerening, Arne & LeMay, Valerie & Stoyan, Dietrich, 2011. "Model-based analysis of the influence of ecological processes on forest point pattern formation—A case study," Ecological Modelling, Elsevier, vol. 222(3), pages 666-678.
- Comas, C. & Mateu, J., 2008. "Space-time dependence dynamics for birth-death point processes," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2715-2719, November.
- Genet, Astrid & Grabarnik, Pavel & Sekretenko, Olga & Pothier, David, 2014. "Incorporating the mechanisms underlying inter-tree competition into a random point process model to improve spatial tree pattern analysis in forestry," Ecological Modelling, Elsevier, vol. 288(C), pages 143-154.
- Renshaw, Eric & Mateu, Jorge & Saura, Fuensanta, 2007. "Disentangling mark/point interaction in marked-point processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3123-3144, March.
- Mohammad Ghorbani & Ottmar Cronie & Jorge Mateu & Jun Yu, 2021. "Functional marked point processes: a natural structure to unify spatio-temporal frameworks and to analyse dependent functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 529-568, September.
- Stindl, Tom & Bi, Zelong & Grazian, Clara, 2025. "Bayesian forecasting of Italian seismicity using the spatiotemporal RETAS model," Computational Statistics & Data Analysis, Elsevier, vol. 212(C).
- Pierfrancesco Alaimo Di Loro & Marco Mingione & Paolo Fantozzi, 2025. "Semi-parametric Spatio-Temporal Hawkes Process for Modelling Road Accidents in Rome," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(1), pages 8-38, March.
- Pennoni, Fulvia & Romeo, Isabella, 2016. "Latent Markov and growth mixture models for ordinal individual responses with covariates: a comparison," MPRA Paper 72939, University Library of Munich, Germany.
- Ivan N. Kutyavin & Alexei V. Manov, 2022. "Spatial relationships of trees in middle taiga post-pyrogenic pine forest stands in the European North-East of Russia," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 68(6), pages 228-240.
- Mohler, George, 2014. "Marked point process hotspot maps for homicide and gun crime prediction in Chicago," International Journal of Forecasting, Elsevier, vol. 30(3), pages 491-497.
- Dassios, Angelos & Zhao, Hongbiao, 2017. "A generalised contagion process with an application to credit risk," LSE Research Online Documents on Economics 68558, London School of Economics and Political Science, LSE Library.
- Chiang, Wen-Hao & Liu, Xueying & Mohler, George, 2022. "Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates," International Journal of Forecasting, Elsevier, vol. 38(2), pages 505-520.
- Peter Halpin & Paul Boeck, 2013. "Modelling Dyadic Interaction with Hawkes Processes," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 793-814, October.
- Chenlong Li & Zhanjie Song & Wenjun Wang, 2020. "Space–time inhomogeneous background intensity estimators for semi-parametric space–time self-exciting point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 945-967, August.
- Hautphenne, Sophie & Fackrell, Mark, 2014. "An EM algorithm for the model fitting of Markovian binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 19-34.
- Julio A. Crego, 2017. "Short Selling Ban and Intraday Dynamics," Working Papers wp2018_1715, CEMFI.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:7:p:2209-2220. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i7p2209-2220.html