Dynamic Bayesian beta models
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Ed McKenzie, 1985. "An Autoregressive Process for Beta Random Variables," Management Science, INFORMS, vol. 31(8), pages 988-997, August.
- Godolphin, E.J. & Triantafyllopoulos, Kostas, 2006. "Decomposition of time series models in state-space form," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2232-2246, May.
- Paolino, Philip, 2001. "Maximum Likelihood Estimation of Models with Beta-Distributed Dependent Variables," Political Analysis, Cambridge University Press, vol. 9(4), pages 325-346, January.
- Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
- Bruche, Max & González-Aguado, Carlos, 2010.
"Recovery rates, default probabilities, and the credit cycle,"
Journal of Banking & Finance, Elsevier, vol. 34(4), pages 754-764, April.
- Bruche, Max & Gonzalez-Aguado, Carlos, 2006. "Recovery rates, default probabilities and the credit cycle," LSE Research Online Documents on Economics 24524, London School of Economics and Political Science, LSE Library.
- Max Bruche & Carlos González-Aguado, 2006. "Recovery Rates, Default Probabilities and the Credit Cycle," Working Papers wp2006_0612, CEMFI.
- Carlos González-Aguado & Max Bruche, 2006. "Recovery Rates, Default Probabilities and the Credit Cycle," FMG Discussion Papers dp572, Financial Markets Group.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Guillermo Ferreira & Jorge Figueroa-Zúñiga & Mário Castro, 2015. "Partially linear beta regression model with autoregressive errors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 752-775, December.
- Cribari-Neto, Francisco & Scher, Vinícius T. & Bayer, Fábio M., 2023. "Beta autoregressive moving average model selection with application to modeling and forecasting stored hydroelectric energy," International Journal of Forecasting, Elsevier, vol. 39(1), pages 98-109.
- Jihyun Park & Juhyun Lee & Suneung Ahn, 2018. "Bayesian Approach for Estimating the Probability of Cartel Penalization under the Leniency Program," Sustainability, MDPI, vol. 10(6), pages 1-15, June.
- Ricardo Rasmussen Petterle & Wagner Hugo Bonat & Cassius Tadeu Scarpin, 2019. "Quasi-beta Longitudinal Regression Model Applied to Water Quality Index Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 346-368, June.
- Phillip Li, 2018. "Efficient MCMC estimation of inflated beta regression models," Computational Statistics, Springer, vol. 33(1), pages 127-158, March.
- Wagner Hugo Bonat & Paulo Justiniano Ribeiro & Walmes Marques Zeviani, 2015. "Likelihood analysis for a class of beta mixed models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 252-266, February.
- Gorynin, Ivan & Derrode, Stéphane & Monfrini, Emmanuel & Pieczynski, Wojciech, 2017. "Fast smoothing in switching approximations of non-linear and non-Gaussian models," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 38-46.
- Souza, M.A.O. & Migon, H.S. & Pereira, J.B.M., 2018. "Extended dynamic generalized linear models: The two-parameter exponential family," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 164-179.
- Fabrizi, Enrico & Trivisano, Carlo, 2016. "Small area estimation of the Gini concentration coefficient," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 223-234.
- Katz, Harrison & Brusch, Kai Thomas & Weiss, Robert E., 2024. "A Bayesian Dirichlet auto-regressive moving average model for forecasting lead times," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1556-1567.
- Ceren Eda Can & Gul Ergun & Refik Soyer, 2022. "Bayesian Analysis of Proportions via a Hidden Markov Model," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3121-3139, December.
- Cheng, Ching-Wei & Hung, Ying-Chao & Balakrishnan, Narayanaswamy, 2014. "Generating beta random numbers and Dirichlet random vectors in R: The package rBeta2009," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1011-1020.
- Rodríguez, Carlos E. & Walker, Stephen G., 2021. "Copula Particle Filters," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
- James D. Santos & José M. J. Costa, 2019. "An Algorithm for Prior Elicitation in Dynamic Bayesian Models for Proportions with the Logit Link Function," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 169-183, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wagner Hugo Bonat & Paulo Justiniano Ribeiro & Walmes Marques Zeviani, 2015. "Likelihood analysis for a class of beta mixed models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 252-266, February.
- Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2021. "Autoregressive conditional proportion: A multiplicative-error model for (0,1)-valued time series," MPRA Paper 110954, University Library of Munich, Germany, revised 06 Dec 2021.
- Abdelhakim Aknouche & Stefanos Dimitrakopoulos, 2023. "Autoregressive conditional proportion: A multiplicative‐error model for (0,1)‐valued time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(4), pages 393-417, July.
- Chiranjit Dutta & Nalini Ravishanker & Sumanta Basu, 2022. "Modeling Multivariate Positive-Valued Time Series Using R-INLA," Papers 2206.05374, arXiv.org, revised Jul 2022.
- Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
- Lorenzo Tedesco & Jacopo Rodeschini & Philipp Otto, 2025. "Computational Benchmark Study in Spatio‐Temporal Statistics With a Hands‐On Guide to Optimise R," Environmetrics, John Wiley & Sons, Ltd., vol. 36(5), July.
- Francesco Finazzi & Jacopo Rodeschini & Lorenzo Tedesco, 2025. "Discussion on Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models," Environmetrics, John Wiley & Sons, Ltd., vol. 36(2), March.
- Leonardo Padilla & Bernado Lagos‐Álvarez & Jorge Mateu & Emilio Porcu, 2020. "Space‐time autoregressive estimation and prediction with missing data based on Kalman filtering," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
- Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Scott, Ryan P. & Scott, Tyler A., 2019. "Investing in collaboration for safety: Assessing grants to states for oil and gas distribution pipeline safety program enhancement," Energy Policy, Elsevier, vol. 124(C), pages 332-345.
- Pascal François, 2019. "The Determinants of Market-Implied Recovery Rates," Risks, MDPI, vol. 7(2), pages 1-15, May.
- Medina-Olivares, Victor & Calabrese, Raffaella & Crook, Jonathan & Lindgren, Finn, 2023. "Joint models for longitudinal and discrete survival data in credit scoring," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1457-1473.
- Jesper Møller & Jakob G. Rasmussen, 2024. "Cox processes driven by transformed Gaussian processes on linear networks—A review and new contributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(3), pages 1288-1322, September.
- Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020.
"The determinants of bank loan recovery rates in good times and bad – New evidence,"
Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
- Hong Wang & Catherine S. Forbes & Jean-Pierre Fenech & John Vaz, 2018. "The determinants of bank loan recovery rates in good times and bad -- new evidence," Monash Econometrics and Business Statistics Working Papers 7/18, Monash University, Department of Econometrics and Business Statistics.
- Hong Wang & Catherine S. Forbes & Jean-Pierre Fenech & John Vaz, 2018. "The determinants of bank loan recovery rates in good times and bad - new evidence," Papers 1804.07022, arXiv.org.
- Jiaqi Teng & Shuzhen Ding & Huiguo Zhang & Xijian Hu, 2023. "MCMCINLA estimation of varying coefficient spatial lag model—A study of China’s economic development in the context of population aging," PLOS ONE, Public Library of Science, vol. 18(5), pages 1-19, May.
- Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
- Carson, Stuart & Mills Flemming, Joanna, 2014. "Seal encounters at sea: A contemporary spatial approach using R-INLA," Ecological Modelling, Elsevier, vol. 291(C), pages 175-181.
- S. Balia, 2007.
"Reporting expected longevity and smoking: evidence from the SHARE,"
Working Paper CRENoS
200705, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Silvia Balia, 2007. "Reporting expected longevity and smoking: evidence from the SHARE," Health, Econometrics and Data Group (HEDG) Working Papers 07/10, HEDG, c/o Department of Economics, University of York.
- Shota Homma & Daisuke Murakami & Shinya Hosokawa & Koji Kanefuji, 2025. "Introduction risk of fire ants through container cargo in ports: Data integration approach considering a logistic network," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-15, February.
- Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:6:p:2074-2089. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i6p2074-2089.html