IDEAS home Printed from
   My bibliography  Save this article

Ensemble classification of paired data


  • Adler, Werner
  • Brenning, Alexander
  • Potapov, Sergej
  • Schmid, Matthias
  • Lausen, Berthold


In many medical applications, data are taken from paired organs or from repeated measurements of the same organ or subject. Subject based as opposed to observation based evaluation of these data results in increased efficiency of the estimation of the misclassification rate. A subject based approach for classification in the generation of bootstrap samples of bagging and bundling methods is analyzed. A simulation model is used to compare the performance of different strategies to create the bootstrap samples which are used to grow individual trees. The proposed approach is compared to linear discriminant analysis, logistic regression, random forests and gradient boosting. Finally, the simulation results are applied to glaucoma diagnosis using both eyes of glaucoma patients and healthy controls. It is demonstrated that the proposed subject based resampling reduces the misclassification rate.

Suggested Citation

  • Adler, Werner & Brenning, Alexander & Potapov, Sergej & Schmid, Matthias & Lausen, Berthold, 2011. "Ensemble classification of paired data," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1933-1941, May.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:5:p:1933-1941

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Iranpanah, N. & Mohammadzadeh, M. & Taylor, C.C., 2011. "A comparison of block and semi-parametric bootstrap methods for variance estimation in spatial statistics," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 578-587, January.
    2. De Bock, Koen W. & Coussement, Kristof & Van den Poel, Dirk, 2010. "Ensemble classification based on generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1535-1546, June.
    3. Hothorn, Torsten & Lausen, Berthold, 2005. "Bundling classifiers by bagging trees," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1068-1078, June.
    4. Rokach, Lior, 2009. "Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4046-4072, October.
    5. Adler, Werner & Lausen, Berthold, 2009. "Bootstrap estimated true and false positive rates and ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 718-729, January.
    6. Zhang, Chun-Xia & Zhang, Jiang-She & Zhang, Gai-Ying, 2009. "Using Boosting to prune Double-Bagging ensembles," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1218-1231, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Narayanaswamy Balakrishnan & Majid Mojirsheibani, 2015. "A simple method for combining estimates to improve the overall error rates in classification," Computational Statistics, Springer, vol. 30(4), pages 1033-1049, December.
    2. Werner Adler & Sergej Potapov & Berthold Lausen, 2011. "Classification of repeated measurements data using tree-based ensemble methods," Computational Statistics, Springer, vol. 26(2), pages 355-369, June.
    3. Mojirsheibani, Majid & Kong, Jiajie, 2016. "An asymptotically optimal kernel combined classifier," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 91-100.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:5:p:1933-1941. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.