IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i5p1933-1941.html
   My bibliography  Save this article

Ensemble classification of paired data

Author

Listed:
  • Adler, Werner
  • Brenning, Alexander
  • Potapov, Sergej
  • Schmid, Matthias
  • Lausen, Berthold

Abstract

In many medical applications, data are taken from paired organs or from repeated measurements of the same organ or subject. Subject based as opposed to observation based evaluation of these data results in increased efficiency of the estimation of the misclassification rate. A subject based approach for classification in the generation of bootstrap samples of bagging and bundling methods is analyzed. A simulation model is used to compare the performance of different strategies to create the bootstrap samples which are used to grow individual trees. The proposed approach is compared to linear discriminant analysis, logistic regression, random forests and gradient boosting. Finally, the simulation results are applied to glaucoma diagnosis using both eyes of glaucoma patients and healthy controls. It is demonstrated that the proposed subject based resampling reduces the misclassification rate.

Suggested Citation

  • Adler, Werner & Brenning, Alexander & Potapov, Sergej & Schmid, Matthias & Lausen, Berthold, 2011. "Ensemble classification of paired data," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1933-1941, May.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:5:p:1933-1941
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00445-7
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iranpanah, N. & Mohammadzadeh, M. & Taylor, C.C., 2011. "A comparison of block and semi-parametric bootstrap methods for variance estimation in spatial statistics," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 578-587, January.
    2. Hothorn, Torsten & Lausen, Berthold, 2005. "Bundling classifiers by bagging trees," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1068-1078, June.
    3. Rokach, Lior, 2009. "Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4046-4072, October.
    4. Adler, Werner & Lausen, Berthold, 2009. "Bootstrap estimated true and false positive rates and ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 718-729, January.
    5. De Bock, Koen W. & Coussement, Kristof & Van den Poel, Dirk, 2010. "Ensemble classification based on generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1535-1546, June.
    6. Zhang, Chun-Xia & Zhang, Jiang-She & Zhang, Gai-Ying, 2009. "Using Boosting to prune Double-Bagging ensembles," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1218-1231, February.
    7. Yuliya V Karpievitch & Elizabeth G Hill & Anthony P Leclerc & Alan R Dabney & Jonas S Almeida, 2009. "An Introspective Comparison of Random Forest-Based Classifiers for the Analysis of Cluster-Correlated Data by Way of RF++," PLOS ONE, Public Library of Science, vol. 4(9), pages 1-10, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Werner Adler & Sergej Potapov & Berthold Lausen, 2011. "Classification of repeated measurements data using tree-based ensemble methods," Computational Statistics, Springer, vol. 26(2), pages 355-369, June.
    2. Narayanaswamy Balakrishnan & Majid Mojirsheibani, 2015. "A simple method for combining estimates to improve the overall error rates in classification," Computational Statistics, Springer, vol. 30(4), pages 1033-1049, December.
    3. Mojirsheibani, Majid & Kong, Jiajie, 2016. "An asymptotically optimal kernel combined classifier," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 91-100.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung, Dongjun & Kim, Hyunjoong, 2015. "Accurate ensemble pruning with PL-bagging," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 1-13.
    2. Mojirsheibani, Majid & Kong, Jiajie, 2016. "An asymptotically optimal kernel combined classifier," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 91-100.
    3. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    4. Hyunju Son & Youyi Fong, 2021. "Fast grid search and bootstrap‐based inference for continuous two‐phase polynomial regression models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    5. Koen W. de Bock & Arno de Caigny, 2021. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling," Post-Print hal-03391564, HAL.
    6. Coolen-Maturi, Tahani & Elkhafifi, Faiza F. & Coolen, Frank P.A., 2014. "Three-group ROC analysis: A nonparametric predictive approach," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 69-81.
    7. Petersen, Maya L. & Molinaro, Annette M. & Sinisi, Sandra E. & van der Laan, Mark J., 2007. "Cross-validated bagged learning," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1693-1704, October.
    8. Chun-Xia Zhang & Jiang-She Zhang & Sang-Woon Kim, 2016. "PBoostGA: pseudo-boosting genetic algorithm for variable ranking and selection," Computational Statistics, Springer, vol. 31(4), pages 1237-1262, December.
    9. Adler, Werner & Lausen, Berthold, 2009. "Bootstrap estimated true and false positive rates and ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 718-729, January.
    10. Coussement, Kristof & De Bock, Koen W., 2013. "Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning," Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
    11. De Bock, Koen W. & Coussement, Kristof & Van den Poel, Dirk, 2010. "Ensemble classification based on generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1535-1546, June.
    12. John Martin & Sona Taheri & Mali Abdollahian, 2024. "Optimizing Ensemble Learning to Reduce Misclassification Costs in Credit Risk Scorecards," Mathematics, MDPI, vol. 12(6), pages 1, March.
    13. Werner Adler & Sergej Potapov & Berthold Lausen, 2011. "Classification of repeated measurements data using tree-based ensemble methods," Computational Statistics, Springer, vol. 26(2), pages 355-369, June.
    14. K. W. De Bock & D. Van Den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/717, Ghent University, Faculty of Economics and Business Administration.
    15. Jasmit Shah & Somnath Datta & Susmita Datta, 2014. "A multi-loss super regression learner (MSRL) with application to survival prediction using proteomics," Computational Statistics, Springer, vol. 29(6), pages 1749-1767, December.
    16. Rokach, Lior, 2009. "Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4046-4072, October.
    17. K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
    18. Barrow, Devon K. & Crone, Sven F., 2016. "A comparison of AdaBoost algorithms for time series forecast combination," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1103-1119.
    19. Foucher Yohann & Danger Richard, 2012. "Time Dependent ROC Curves for the Estimation of True Prognostic Capacity of Microarray Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(6), pages 1-22, November.
    20. Honoria Ocagli & Daniele Bottigliengo & Giulia Lorenzoni & Danila Azzolina & Aslihan S. Acar & Silvia Sorgato & Lucia Stivanello & Mario Degan & Dario Gregori, 2021. "A Machine Learning Approach for Investigating Delirium as a Multifactorial Syndrome," IJERPH, MDPI, vol. 18(13), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:5:p:1933-1941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.