IDEAS home Printed from
   My bibliography  Save this article

The joint model of the logistic model and linear random effect model -- An application to predict orthostatic hypertension for subacute stroke patients


  • Hwang, Yi-Ting
  • Tsai, Hao-Yun
  • Chang, Yeu-Jhy
  • Kuo, Hsun-Chih
  • Wang, Chun-Chao


Stroke is a common acute neurologic and disabling disease. Orthostatic hypertension (OH) is one of the catastrophic cardiovascular conditions. If a stroke patient has OH, he/she has higher chance to fall or syncope during the following courses of treatment. This can result in possible bone fracture and the burden of medical cost therefore increases. How to early diagnose OH is clinically important. However, there is no obvious time-saving method for clinical evaluation except to check the postural blood pressure. This paper uses clinical data to identify potential clinical factors that are associated with OH. The data include repeatedly observed blood pressure, and the patient's basic characteristics and clinical symptoms. A traditional logistic regression is not appropriate for such data. The paper modifies the two-stage model proposed by Tsiatis et al. (1995) and the joint model proposed by Wulfsohn and Tsiatis (1997) to take into account of a sequence of repeated measures to predict OH. The large sample properties of estimators of modified models are derived. Monte Carlo simulations are performed to evaluate the accuracy of these estimators. A case study is presented.

Suggested Citation

  • Hwang, Yi-Ting & Tsai, Hao-Yun & Chang, Yeu-Jhy & Kuo, Hsun-Chih & Wang, Chun-Chao, 2011. "The joint model of the logistic model and linear random effect model -- An application to predict orthostatic hypertension for subacute stroke patients," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 914-923, January.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:914-923

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Fushing Hsieh & Yi-Kuan Tseng & Jane-Ling Wang, 2006. "Joint Modeling of Survival and Longitudinal Data: Likelihood Approach Revisited," Biometrics, The International Biometric Society, vol. 62(4), pages 1037-1043, December.
    2. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Bernhardt, Paul W. & Zhang, Daowen & Wang, Huixia Judy, 2015. "A fast EM algorithm for fitting joint models of a binary response and multiple longitudinal covariates subject to detection limits," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 37-53.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:914-923. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.