IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i8p2012-2020.html
   My bibliography  Save this article

Bayesian classification for bivariate normal gene expression

Author

Listed:
  • Ramos, Sandra
  • Amaral Turkman, Antónia
  • Antunes, Marília

Abstract

A Bayesian optimal screening method (BOSc) is proposed to classify an individual into one of two groups, based on the observation of pairs of covariates, namely the expression level of pairs of genes (previously selected by a specific method, among the thousands of genes present in the microarray) measured using DNA microarrays technology. The method is general and can be applied to any correlated pair of screening variables, either with a bivariate normal distribution or which can be transformed into a bivariate normal.1 Results on microarray data sets (Leukemia, Prostate and Breast) show that BOSc performance is competitive with, and in some cases significantly better than, quadratic and linear discriminant analyses and support vector machines classifiers. BOSc provides flexible parametric decision rules. Finally, the screening classifier allows the calculation of operating characteristics while addressing information about the prevalence of the disease or type of disease, which is an advantage over other classification methods.

Suggested Citation

  • Ramos, Sandra & Amaral Turkman, Antónia & Antunes, Marília, 2010. "Bayesian classification for bivariate normal gene expression," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 2012-2020, August.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:8:p:2012-2020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00091-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nguyen, Danh V. & Rocke, D.M.David M., 2004. "On partial least squares dimension reduction for microarray-based classification: a simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 46(3), pages 407-425, June.
    2. Dai Jian J & Lieu Linh & Rocke David, 2006. "Dimension Reduction for Classification with Gene Expression Microarray Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-21, February.
    3. Shim, Jooyong & Sohn, Insuk & Kim, Sujong & Lee, Jae Won & Green, Paul E. & Hwang, Changha, 2009. "Selecting marker genes for cancer classification using supervised weighted kernel clustering and the support vector machine," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1736-1742, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen Tuan S & Rojo Javier, 2009. "Dimension Reduction of Microarray Data in the Presence of a Censored Survival Response: A Simulation Study," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-38, January.
    2. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    3. Drechsler, Jörg & Reiter, Jerome P., 2011. "An empirical evaluation of easily implemented, nonparametric methods for generating synthetic datasets," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3232-3243, December.
    4. Boulesteix Anne-Laure, 2006. "Reader's Reaction to "Dimension Reduction for Classification with Gene Expression Microarray Data" by Dai et al (2006)," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-7, June.
    5. Sami Ben Jabeur & Youssef Fahmi, 2018. "Forecasting financial distress for French firms: a comparative study," Empirical Economics, Springer, vol. 54(3), pages 1173-1186, May.
    6. Flavia Esposito, 2021. "A Review on Initialization Methods for Nonnegative Matrix Factorization: Towards Omics Data Experiments," Mathematics, MDPI, vol. 9(9), pages 1-17, April.
    7. Mohamed Massaoudi & Shady S. Refaat & Haitham Abu-Rub & Ines Chihi & Fakhreddine S. Oueslati, 2020. "PLS-CNN-BiLSTM: An End-to-End Algorithm-Based Savitzky–Golay Smoothing and Evolution Strategy for Load Forecasting," Energies, MDPI, vol. 13(20), pages 1-29, October.
    8. Agyapal Singh & Jiwan Jyoti Maini, 2019. "Factors Associated with Quality of Work-Life Among Faculty of Technical Institutes in Punjab," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 44(3), pages 225-247, August.
    9. Sami Ben Jabeur & Youssef Fahmi, 2014. "Les modèles de prévision de la défaillance des entreprises françaises : une approche comparative," Working Papers 2014-317, Department of Research, Ipag Business School.
    10. Prendergast, Luke A. & Smith, Jodie A., 2022. "Influence functions for linear discriminant analysis: Sensitivity analysis and efficient influence diagnostics," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    11. Nengsih Titin Agustin & Bertrand Frédéric & Maumy-Bertrand Myriam & Meyer Nicolas, 2019. "Determining the number of components in PLS regression on incomplete data set," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(6), pages 1-28, December.
    12. Ben Jabeur Sami, 2013. "Corporate Failure:A Non Parametric Method," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(3), pages 103-110, July.
    13. Song Huang & Tiejun Tong & Hongyu Zhao, 2010. "Bias-Corrected Diagonal Discriminant Rules for High-Dimensional Classification," Biometrics, The International Biometric Society, vol. 66(4), pages 1096-1106, December.
    14. Abhishek Bhola & Shailendra Singh, 2019. "Visualisation and Modelling of High-Dimensional Cancerous Gene Expression Dataset," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 1-22, March.
    15. Ben Jabeur, Sami, 2017. "Bankruptcy prediction using Partial Least Squares Logistic Regression," Journal of Retailing and Consumer Services, Elsevier, vol. 36(C), pages 197-202.
    16. Hayashi Takeshi, 2012. "Variational Bayes Procedure for Effective Classification of Tumor Type with Microarray Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-21, October.
    17. Nguyen, Danh V., 2004. "On estimating the proportion of true null hypotheses for false discovery rate controlling procedures in exploratory DNA microarray studies," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 611-637, October.
    18. Insuk Sohn & Jooyong Shim & Changha Hwang & Sujong Kim & Jae Won Lee, 2014. "Transcription factor-binding site identification and gene classification via fusion of the supervised-weighted discrete kernel clustering and support vector machine," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 573-581, March.
    19. Asuman Turkmen & Nedret Billor, 2013. "Partial least squares classification for high dimensional data using the PCOUT algorithm," Computational Statistics, Springer, vol. 28(2), pages 771-788, April.
    20. Sek Won Kong & Christin D Collins & Yuko Shimizu-Motohashi & Ingrid A Holm & Malcolm G Campbell & In-Hee Lee & Stephanie J Brewster & Ellen Hanson & Heather K Harris & Kathryn R Lowe & Adrianna Saada , 2012. "Characteristics and Predictive Value of Blood Transcriptome Signature in Males with Autism Spectrum Disorders," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:8:p:2012-2020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.