IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i9p1006-d546017.html
   My bibliography  Save this article

A Review on Initialization Methods for Nonnegative Matrix Factorization: Towards Omics Data Experiments

Author

Listed:
  • Flavia Esposito

    (Department of Mathematics, University of Bari Aldo Moro, 70125 Bari, Italy
    Member of INDAM-GNCS research group.)

Abstract

Nonnegative Matrix Factorization (NMF) has acquired a relevant role in the panorama of knowledge extraction, thanks to the peculiarity that non-negativity applies to both bases and weights, which allows meaningful interpretations and is consistent with the natural human part-based learning process. Nevertheless, most NMF algorithms are iterative, so initialization methods affect convergence behaviour, the quality of the final solution, and NMF performance in terms of the residual of the cost function. Studies on the impact of NMF initialization techniques have been conducted for text or image datasets, but very few considerations can be found in the literature when biological datasets are studied, even though NMFs have largely demonstrated their usefulness in better understanding biological mechanisms with omic datasets. This paper aims to present the state-of-the-art on NMF initialization schemes along with some initial considerations on the impact of initialization methods when microarrays (a simple instance of omic data) are evaluated with NMF mechanisms. Using a series of measures to qualitatively examine the biological information extracted by a given NMF scheme, it preliminary appears that some information (e.g., represented by genes) can be extracted regardless of the initialization scheme used.

Suggested Citation

  • Flavia Esposito, 2021. "A Review on Initialization Methods for Nonnegative Matrix Factorization: Towards Omics Data Experiments," Mathematics, MDPI, vol. 9(9), pages 1-17, April.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:1006-:d:546017
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/9/1006/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/9/1006/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    2. Prabhakar Chalise & Brooke L Fridley, 2017. "Integrative clustering of multi-level ‘omic data based on non-negative matrix factorization algorithm," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-18, May.
    3. Dai Jian J & Lieu Linh & Rocke David, 2006. "Dimension Reduction for Classification with Gene Expression Microarray Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-21, February.
    4. Jingu Kim & Yunlong He & Haesun Park, 2014. "Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework," Journal of Global Optimization, Springer, vol. 58(2), pages 285-319, February.
    5. Karthik Devarajan, 2008. "Nonnegative Matrix Factorization: An Analytical and Interpretive Tool in Computational Biology," PLOS Computational Biology, Public Library of Science, vol. 4(7), pages 1-12, July.
    6. Abdul Suleman, 2017. "On ill-conceived initialization in archetypal analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 785-808, December.
    7. Monika Piwowar & Kinga A Kocemba-Pilarczyk & Piotr Piwowar, 2018. "Regularization and grouping -omics data by GCA method: A transcriptomic case," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-14, November.
    8. Nicolas Sauwen & Marjan Acou & Halandur N Bharath & Diana M Sima & Jelle Veraart & Frederik Maes & Uwe Himmelreich & Eric Achten & Sabine Van Huffel, 2017. "The successive projection algorithm as an initialization method for brain tumor segmentation using non-negative matrix factorization," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Fogel & Yann Gaston-Mathé & Douglas Hawkins & Fajwel Fogel & George Luta & S. Stanley Young, 2016. "Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health," IJERPH, MDPI, vol. 13(5), pages 1-14, May.
    2. Takehiro Sano & Tsuyoshi Migita & Norikazu Takahashi, 2022. "A novel update rule of HALS algorithm for nonnegative matrix factorization and Zangwill’s global convergence," Journal of Global Optimization, Springer, vol. 84(3), pages 755-781, November.
    3. Duy Khuong Nguyen & Tu Bao Ho, 2017. "Accelerated parallel and distributed algorithm using limited internal memory for nonnegative matrix factorization," Journal of Global Optimization, Springer, vol. 68(2), pages 307-328, June.
    4. Da Kuang & Sangwoon Yun & Haesun Park, 2015. "SymNMF: nonnegative low-rank approximation of a similarity matrix for graph clustering," Journal of Global Optimization, Springer, vol. 62(3), pages 545-574, July.
    5. Geert-Jan Huizing & Ina Maria Deutschmann & Gabriel Peyré & Laura Cantini, 2023. "Paired single-cell multi-omics data integration with Mowgli," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Rundong Du & Da Kuang & Barry Drake & Haesun Park, 2017. "DC-NMF: nonnegative matrix factorization based on divide-and-conquer for fast clustering and topic modeling," Journal of Global Optimization, Springer, vol. 68(4), pages 777-798, August.
    7. Jingu Kim & Yunlong He & Haesun Park, 2014. "Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework," Journal of Global Optimization, Springer, vol. 58(2), pages 285-319, February.
    8. José M. Maisog & Andrew T. DeMarco & Karthik Devarajan & Stanley Young & Paul Fogel & George Luta, 2021. "Assessing Methods for Evaluating the Number of Components in Non-Negative Matrix Factorization," Mathematics, MDPI, vol. 9(22), pages 1-13, November.
    9. Hui-Min Wang & Ching-Lin Hsiao & Ai-Ru Hsieh & Ying-Chao Lin & Cathy S J Fann, 2012. "Constructing Endophenotypes of Complex Diseases Using Non-Negative Matrix Factorization and Adjusted Rand Index," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-12, July.
    10. Norikazu Takahashi & Jiro Katayama & Masato Seki & Jun’ichi Takeuchi, 2018. "A unified global convergence analysis of multiplicative update rules for nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 71(1), pages 221-250, September.
    11. Srinivas Eswar & Ramakrishnan Kannan & Richard Vuduc & Haesun Park, 2021. "ORCA: Outlier detection and Robust Clustering for Attributed graphs," Journal of Global Optimization, Springer, vol. 81(4), pages 967-989, December.
    12. Mohammadamin Edrisi & Xiru Huang & Huw A. Ogilvie & Luay Nakhleh, 2023. "Accurate integration of single-cell DNA and RNA for analyzing intratumor heterogeneity using MaCroDNA," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    14. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    15. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    16. Naiyang Guan & Lei Wei & Zhigang Luo & Dacheng Tao, 2013. "Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    17. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    18. M. Moghadam & K. Aminian & M. Asghari & M. Parnianpour, 2013. "How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 291-301.
    19. Markovsky, Ivan & Niranjan, Mahesan, 2010. "Approximate low-rank factorization with structured factors," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3411-3420, December.
    20. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:1006-:d:546017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.