IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i4p1388-1399.html
   My bibliography  Save this article

Bayesian density estimation from grouped continuous data

Author

Listed:
  • Lambert, Philippe
  • Eilers, Paul H.C.

Abstract

Grouped data occur frequently in practice, either because of limited resolution of instruments, or because data have been summarized in relatively wide bins. A combination of the composite link model with roughness penalties is proposed to estimate smooth densities from such data in a Bayesian framework. A simulation study is used to evaluate the performances of the strategy in the estimation of a density, of its quantiles and first moments. Two illustrations are presented: the first one involves grouped data of lead concentration in the blood and the second one the number of deaths due to tuberculosis in The Netherlands in wide age classes.

Suggested Citation

  • Lambert, Philippe & Eilers, Paul H.C., 2009. "Bayesian density estimation from grouped continuous data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1388-1399, February.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:1388-1399
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00561-6
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Thompson & R. J. Baker, 1981. "Composite Link Functions in Generalized Linear Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 30(2), pages 125-131, June.
    2. Lambert, Philippe, 2007. "Archimedean copula estimation using Bayesian splines smoothing techniques," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6307-6320, August.
    3. Jullion, Astrid & Lambert, Philippe, 2007. "Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2542-2558, February.
    4. Gareth O. Roberts & Jeffrey S. Rosenthal, 1998. "Optimal scaling of discrete approximations to Langevin diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 255-268.
    5. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
    6. Berry S. M. & Carroll R. J & Ruppert D., 2002. "Bayesian Smoothing and Regression Splines for Measurement Error Problems," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 160-169, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaeger, Jonathan & Lambert, Philippe, 2012. "Bayesian penalized smoothing approaches in models specified using affine differential equations with unknown error distributions," LIDAM Discussion Papers ISBA 2012017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Philippe Lambert, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 284-286, August.
    3. Lambert, Philippe, 2021. "Fast Bayesian inference using Laplace approximations in nonparametric double additive location-scale models with right- and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    4. Golyandina, Nina & Pepelyshev, Andrey & Steland, Ansgar, 2012. "New approaches to nonparametric density estimation and selection of smoothing parameters," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2206-2218.
    5. Lambert, Philippe, 2023. "Nonparametric density estimation and risk quantification from tabulated sample moments," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 177-189.
    6. Lambert, Philippe & Gressani, Oswaldo, 2022. "Penalty parameter selection and asymmetry corrections to Laplace approximations in Bayesian P-splines models," LIDAM Discussion Papers ISBA 2022030, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Papkov, Galen I. & Scott, David W., 2010. "Local-moment nonparametric density estimation of pre-binned data," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3421-3429, December.
    8. Lambert, Philippe, 2011. "Smooth semiparametric and nonparametric Bayesian estimation of bivariate densities from bivariate histogram data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 429-445, January.
    9. Jonathan Jaeger & Philippe Lambert, 2014. "Bayesian penalized smoothing approaches in models specified using differential equations with unknown error distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2709-2726, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lambert, Philippe, 2007. "Archimedean copula estimation using Bayesian splines smoothing techniques," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6307-6320, August.
    2. Jaeger, Jonathan & Lambert, Philippe, 2012. "Bayesian penalized smoothing approaches in models specified using affine differential equations with unknown error distributions," LIDAM Discussion Papers ISBA 2012017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    4. Bremhorst, Vincent & Lambert, Philippe, 2013. "Flexible estimation in cure survival models using Bayesian P-splines," LIDAM Discussion Papers ISBA 2013039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Jullion, Astrid & Lambert, Philippe, 2007. "Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2542-2558, February.
    6. Belitz, Christiane & Lang, Stefan, 2008. "Simultaneous selection of variables and smoothing parameters in structured additive regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 61-81, September.
    7. Bremhorst, Vincent & Lambert, Philippe, 2016. "Flexible estimation in cure survival models using Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 270-284.
    8. Scheipl, Fabian & Kneib, Thomas, 2009. "Locally adaptive Bayesian P-splines with a Normal-Exponential-Gamma prior," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3533-3552, August.
    9. Bremhorst, Vincent & Kreyenfeld, Michaela & Lambert, Philippe, 2017. "Nonparametric double additive cure survival models: an application to the estimation of the nonlinear effect of age at first parenthood on fertility progression," LIDAM Discussion Papers ISBA 2017004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Stefan Lang & Nikolaus Umlauf & Peter Wechselberger & Kenneth Harttgen & Thomas Kneib, 2012. "Multilevel structured additive regression," Working Papers 2012-07, Faculty of Economics and Statistics, Universität Innsbruck.
    11. Patricio Maturana-Russel & Renate Meyer, 2021. "Bayesian spectral density estimation using P-splines with quantile-based knot placement," Computational Statistics, Springer, vol. 36(3), pages 2055-2077, September.
    12. repec:jss:jstsof:37:i05 is not listed on IDEAS
    13. Nadja Klein & Michel Denuit & Stefan Lang & Thomas Kneib, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," Working Papers 2013-24, Faculty of Economics and Statistics, Universität Innsbruck.
    14. Philippe Lambert & Vincent Bremhorst, 2020. "Inclusion of time‐varying covariates in cure survival models with an application in fertility studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 333-354, January.
    15. Lambert, Philippe, 2011. "Smooth semiparametric and nonparametric Bayesian estimation of bivariate densities from bivariate histogram data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 429-445, January.
    16. Lambert, Philippe & Gressani, Oswaldo, 2022. "Penalty parameter selection and asymmetry corrections to Laplace approximations in Bayesian P-splines models," LIDAM Discussion Papers ISBA 2022030, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2014. "Nonlife ratemaking and risk management with Bayesian generalized additive models for location, scale, and shape," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 225-249.
    18. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," LIDAM Discussion Papers ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Nadja Klein & Thomas Kneib & Stefan Lang, 2015. "Bayesian Generalized Additive Models for Location, Scale, and Shape for Zero-Inflated and Overdispersed Count Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 405-419, March.
    20. Felix Heinzl & Ludwig Fahrmeir & Thomas Kneib, 2012. "Additive mixed models with Dirichlet process mixture and P-spline priors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 47-68, January.
    21. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:1388-1399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.