IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v38y2001i2p217-233.html
   My bibliography  Save this article

Probability matrix decomposition models and main-effects generalized linear models for the analysis of replicated binary associations

Author

Listed:
  • Meulders, Michel
  • Boeck, Paul De
  • Mechelen, Iven Van

Abstract

No abstract is available for this item.

Suggested Citation

  • Meulders, Michel & Boeck, Paul De & Mechelen, Iven Van, 2001. "Probability matrix decomposition models and main-effects generalized linear models for the analysis of replicated binary associations," Computational Statistics & Data Analysis, Elsevier, vol. 38(2), pages 217-233, December.
  • Handle: RePEc:eee:csdana:v:38:y:2001:i:2:p:217-233
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(01)00029-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Gelman & Y. Goegebeur & F. Tuerlinckx & I. Van Mechelen, 2000. "Diagnostic checks for discrete data regression models using posterior predictive simulations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(2), pages 247-268.
    2. Iwin Leenen & Iven Mechelen & Paul Boeck & Seymour Rosenberg, 1999. "Indclas: A three-way hierarchical classes model," Psychometrika, Springer;The Psychometric Society, vol. 64(1), pages 9-24, March.
    3. Smolenaars, E., 1995. "Six dimensions of retirement ages : Old age pensions in Germany, 1880-1990," WORC Paper 95.07.017/2, Tilburg University, Work and Organization Research Centre.
    4. Eric Maris & Paul Boeck & Iven Mechelen, 1996. "Probability matrix decomposition models," Psychometrika, Springer;The Psychometric Society, vol. 61(1), pages 7-29, March.
    5. Eric Maris, 1995. "Psychometric latent response models," Psychometrika, Springer;The Psychometric Society, vol. 60(4), pages 523-547, December.
    6. Iven Mechelen & Paul Boeck & Seymour Rosenberg, 1995. "The conjunctive model of hierarchical classes," Psychometrika, Springer;The Psychometric Society, vol. 60(4), pages 505-521, December.
    7. Even Mechelen & Paul Boeck, 1990. "Projection of a binary criterion into a model of hierarchical classes," Psychometrika, Springer;The Psychometric Society, vol. 55(4), pages 677-694, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michel Meulders & Francis Tuerlinckx & Wolf Vanpaemel, 2013. "Constrained Multilevel Latent Class Models for the Analysis of Three-Way Three-Mode Binary Data," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 306-337, October.
    2. Michel Meulders & Paul Boeck & Iven Mechelen, 2003. "A taxonomy of latent structure assumptions for probability matrix decomposition models," Psychometrika, Springer;The Psychometric Society, vol. 68(1), pages 61-77, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iwin Leenen & Iven Mechelen & Paul Boeck, 2001. "Models for ordinal hierarchical classes analysis," Psychometrika, Springer;The Psychometric Society, vol. 66(3), pages 389-403, September.
    2. Iwin Leenen & Iven Mechelen & Andrew Gelman & Stijn Knop, 2008. "Bayesian Hierarchical Classes Analysis," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 39-64, March.
    3. Eva Ceulemans & Iven Mechelen, 2005. "Hierarchical classes models for three-way three-mode binary data: interrelations and model selection," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 461-480, September.
    4. Tom Wilderjans & E. Ceulemans & I. Mechelen, 2012. "The SIMCLAS Model: Simultaneous Analysis of Coupled Binary Data Matrices with Noise Heterogeneity Between and Within Data Blocks," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 724-740, October.
    5. Nana Kim & Daniel M. Bolt & James Wollack, 2022. "Noncompensatory MIRT For Passage-Based Tests," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 992-1009, September.
    6. Tom Wilderjans & Eva Ceulemans & Iven Mechelen, 2008. "The CHIC Model: A Global Model for Coupled Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 729-751, December.
    7. Thomas J. Steenburgh & Andrew Ainslie & Peder Hans Engebretson, 2003. "Massively Categorical Variables: Revealing the Information in Zip Codes," Marketing Science, INFORMS, vol. 22(1), pages 40-57, August.
    8. Andrew Gelman & Ginger L. Chew & Michael Shnaidman, 2004. "Bayesian Analysis of Serial Dilution Assays," Biometrics, The International Biometric Society, vol. 60(2), pages 407-417, June.
    9. Iwin Leenen & Iven Mechelen & Paul Boeck & Seymour Rosenberg, 1999. "Indclas: A three-way hierarchical classes model," Psychometrika, Springer;The Psychometric Society, vol. 64(1), pages 9-24, March.
    10. Patrizia Ordine & Claudio Lupi, 2009. "Family Income and Students' Mobility," Giornale degli Economisti, GDE (Giornale degli Economisti e Annali di Economia), Bocconi University, vol. 68(1), pages 1-23, April.
    11. Eijffinger, Sylvester & Mahieu, Ronald & Raes, Louis, 2018. "Inferring hawks and doves from voting records," European Journal of Political Economy, Elsevier, vol. 51(C), pages 107-120.
    12. Clough, Brian J. & Russell, Matthew B. & Domke, Grant M. & Woodall, Christopher W. & Radtke, Philip J., 2016. "Comparing tree foliage biomass models fitted to a multispecies, felled-tree biomass dataset for the United States," Ecological Modelling, Elsevier, vol. 333(C), pages 79-91.
    13. Wilderjans, Tom & Ceulemans, Eva & Van Mechelen, Iven, 2009. "Simultaneous analysis of coupled data blocks differing in size: A comparison of two weighting schemes," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1086-1098, February.
    14. Sora Lee & Daniel M. Bolt, 2018. "Asymmetric Item Characteristic Curves and Item Complexity: Insights from Simulation and Real Data Analyses," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 453-475, June.
    15. Eric Maris & Paul Boeck & Iven Mechelen, 1996. "Probability matrix decomposition models," Psychometrika, Springer;The Psychometric Society, vol. 61(1), pages 7-29, March.
    16. Esther Ulitzsch & Steffi Pohl & Lale Khorramdel & Ulf Kroehne & Matthias Davier, 2022. "A Response-Time-Based Latent Response Mixture Model for Identifying and Modeling Careless and Insufficient Effort Responding in Survey Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 593-619, June.
    17. Nadja Bodner & Laura Bringmann & Francis Tuerlinckx & Peter Jonge & Eva Ceulemans, 2022. "ConNEcT: A Novel Network Approach for Investigating the Co-occurrence of Binary Psychopathological Symptoms Over Time," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 107-132, March.
    18. Andrew Gelman, 2003. "A Bayesian Formulation of Exploratory Data Analysis and Goodness‐of‐fit Testing," International Statistical Review, International Statistical Institute, vol. 71(2), pages 369-382, August.
    19. Michel Meulders & Paul Boeck & Iven Mechelen, 2003. "A taxonomy of latent structure assumptions for probability matrix decomposition models," Psychometrika, Springer;The Psychometric Society, vol. 68(1), pages 61-77, March.
    20. Tom Wilderjans & Dirk Depril & Iven Van Mechelen, 2013. "Additive Biclustering: A Comparison of One New and Two Existing ALS Algorithms," Journal of Classification, Springer;The Classification Society, vol. 30(1), pages 56-74, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:38:y:2001:i:2:p:217-233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.