Dual-semiparametric regression using weighted Dirichlet process mixture
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2017.08.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
- Jensen, Mark J. & Maheu, John M., 2013.
"Bayesian semiparametric multivariate GARCH modeling,"
Journal of Econometrics, Elsevier, vol. 176(1), pages 3-17.
- Mark J. Jensen & John M. Maheu, 2012. "Bayesian semiparametric multivariate GARCH modeling," FRB Atlanta Working Paper 2012-09, Federal Reserve Bank of Atlanta.
- Mark J. Jensen & John M. Maheu, 2012. "Bayesian Semiparametric Multivariate GARCH Modeling," Working Paper series 48_12, Rimini Centre for Economic Analysis.
- Mark J Jensen & John M Maheu, 2012. "Bayesian semiparametric multivariate GARCH modeling," Working Papers tecipa-458, University of Toronto, Department of Economics.
- Basu S. & Chib S., 2003. "Marginal Likelihood and Bayes Factors for Dirichlet Process Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 224-235, January.
- David B. Dunson & Joseph B. Stanford, 2005. "Bayesian Inferences on Predictors of Conception Probabilities," Biometrics, The International Biometric Society, vol. 61(1), pages 126-133, March.
- Huaiye Zhang & Inyoung Kim & Chun Gun Park, 2014. "Semiparametric Bayesian hierarchical models for heterogeneous population in nonlinear mixed effect model: application to gastric emptying studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2743-2760, December.
- David B. Dunson & Natesh Pillai & Ju‐Hyun Park, 2007. "Bayesian density regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 163-183, April.
- Chib, Siddhartha & Greenberg, Edward, 2010. "Additive cubic spline regression with Dirichlet process mixture errors," Journal of Econometrics, Elsevier, vol. 156(2), pages 322-336, June.
- Kim, Inyoung & Cohen, Noah, 2004. "Semiparametric and nonparametric modeling for effect modification in matched studies," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 631-643, July.
- Hamdy F. F. Mahmoud & Inyoung Kim & Ho Kim, 2016. "Semiparametric single index multi change points model with an application of environmental health study on mortality and temperature," Environmetrics, John Wiley & Sons, Ltd., vol. 27(8), pages 494-506, December.
- Debdeep Pati & David Dunson, 2014. "Bayesian nonparametric regression with varying residual density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 1-31, February.
- Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hübler, Olaf, 2017. "Health and Body Mass Index: No Simple Relationship," IZA Discussion Papers 10620, Institute of Labor Economics (IZA).
- Mark J. Jensen & John M. Maheu, 2018.
"Risk, Return and Volatility Feedback: A Bayesian Nonparametric Analysis,"
JRFM, MDPI, vol. 11(3), pages 1-29, September.
- Jensen, Mark J & Maheu, John M, 2013. "Risk, Return and Volatility Feedback: A Bayesian Nonparametric Analysis," MPRA Paper 52132, University Library of Munich, Germany.
- Mark J. Jensen & John M. Maheu, 2014. "Risk, Return, and Volatility Feedback: A Bayesian Nonparametric Analysis," FRB Atlanta Working Paper 2014-6, Federal Reserve Bank of Atlanta.
- Mark J. Jensen & John M. Maheu, 2014. "Risk, Return and Volatility Feedback: A Bayesian Nonparametric Analysis," Working Paper series 31_14, Rimini Centre for Economic Analysis.
- Chib, Siddhartha & Greenberg, Edward, 2010. "Additive cubic spline regression with Dirichlet process mixture errors," Journal of Econometrics, Elsevier, vol. 156(2), pages 322-336, June.
- Jin, Xin & Maheu, John M., 2016.
"Bayesian semiparametric modeling of realized covariance matrices,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
- Jin, Xin & Maheu, John M, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," MPRA Paper 60102, University Library of Munich, Germany.
- Xin Jin & John M. Maheu, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," Working Paper series 34_14, Rimini Centre for Economic Analysis.
- Mark J. Meyer & Haobo Cheng & Katherine Hobbs Knutson, 2023. "Bayesian Analysis of Multivariate Matched Proportions with Sparse Response," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 490-509, July.
- Christos Merkatas & Simo Särkkä, 2023. "System identification using autoregressive Bayesian neural networks with nonparametric noise models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 319-330, May.
- Debdeep Pati & David Dunson, 2014. "Bayesian nonparametric regression with varying residual density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 1-31, February.
- Hamdy F. F. Mahmoud & Inyoung Kim, 2023. "Semiparametric Integrated and Additive Spatio-Temporal Single-Index Models," Mathematics, MDPI, vol. 11(22), pages 1-15, November.
- Hauzenberger, Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2025.
"Bayesian neural networks for macroeconomic analysis,"
Journal of Econometrics, Elsevier, vol. 249(PC).
- Niko Hauzenberger & Florian Huber & Karin Klieber & Massimiliano Marcellino, 2022. "Bayesian Neural Networks for Macroeconomic Analysis," Papers 2211.04752, arXiv.org, revised Apr 2024.
- Hauzenberger , Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2024. "Bayesian Neural Networks for Macroeconomic Analysis," CEPR Discussion Papers 19381, C.E.P.R. Discussion Papers.
- Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2025.
"Specification Choices in Quantile Regression for Empirical Macroeconomics,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(1), pages 57-73, January.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
- Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2024. "Specification Choices in Quantile Regression for Empirical Macroeconomics," CEPR Discussion Papers 18901, C.E.P.R. Discussion Papers.
- Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
- Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022.
"APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
- Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2021. "Approximate Bayesian inference and forecasting in huge-dimensional multi-country VARs," Papers 2103.04944, arXiv.org, revised Feb 2022.
- Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
- Lianming Wang & David B. Dunson, 2010. "Semiparametric Bayes Multiple Testing: Applications to Tumor Data," Biometrics, The International Biometric Society, vol. 66(2), pages 493-501, June.
- Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
- Hyunju Son & Youyi Fong, 2021. "Fast grid search and bootstrap‐based inference for continuous two‐phase polynomial regression models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
- Wei Huang & Oliver Linton & Zheng Zhang, 2022.
"A Unified Framework for Specification Tests of Continuous Treatment Effect Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1817-1830, October.
- Wei Huang & Oliver Linton & Zheng Zhang, 2021. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Papers 2102.08063, arXiv.org, revised Sep 2021.
- Huang, W. & Linton, O. & Zhang, Z., 2021. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Cambridge Working Papers in Economics 2113, Faculty of Economics, University of Cambridge.
- Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017.
"Generalized partially linear regression with misclassified data and an application to labour market transitions,"
Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
- Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2015. "Generalised partially linear regression with misclassied data and an application to labour market transitions," FDZ-Methodenreport 201510 (en), Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2015. "Generalised partially linear regression with misclassified data and an application to labour market transitions," ZEW Discussion Papers 15-043, ZEW - Leibniz Centre for European Economic Research.
- Georges Bresson & Cheng Hsiao, 2011.
"A functional connectivity approach for modeling cross-sectional dependence with an application to the estimation of hedonic housing prices in Paris,"
AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 501-529, December.
- Bresson G. & Hsiao C., 2008. "A Functional Connectivity Approach for Modeling Cross-Sectional Dependence with an Application to the Estimation of Hedonic Housing Prices in Paris," Working Papers ERMES 0810, ERMES, University Paris 2.
More about this item
Keywords
Additive model; Bayes factor; Cubic splines; Dual-semiparametric regression; Generalized pólya urn; Gibbs sampling; Metropolis–Hastings; Nonparametric Bayesian model; Ordinal data; Semiparametric regression; Weighted Dirichlet process;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:117:y:2018:i:c:p:162-181. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.