IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v112y2017icp170-185.html

Bayesian variable selection for a semi-competing risks model with three hazard functions

Author

Listed:
  • Chapple, Andrew G.
  • Vannucci, Marina
  • Thall, Peter F.
  • Lin, Steven

Abstract

A variable selection procedure is developed for a semi-competing risks regression model with three hazard functions that uses spike-and-slab priors and stochastic search variable selection algorithms for posterior inference. A rule is devised for choosing the threshold on the marginal posterior probability of variable inclusion based on the Deviance Information Criterion (DIC) that is examined in a simulation study. The method is applied to data from esophageal cancer patients from the MD Anderson Cancer Center, Houston, TX, where the most important covariates are selected in each of the hazards of effusion, death before effusion, and death after effusion. The DIC procedure that is proposed leads to similar selected models regardless of the choices of some of the hyperparameters. The application results show that patients with intensity-modulated radiation therapy have significantly reduced risks of pericardial effusion, pleural effusion, and death before either effusion type.

Suggested Citation

  • Chapple, Andrew G. & Vannucci, Marina & Thall, Peter F. & Lin, Steven, 2017. "Bayesian variable selection for a semi-competing risks model with three hazard functions," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 170-185.
  • Handle: RePEc:eee:csdana:v:112:y:2017:i:c:p:170-185
    DOI: 10.1016/j.csda.2017.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317300464
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    2. Kyu Ha Lee & Sebastien Haneuse & Deborah Schrag & Francesca Dominici, 2015. "Bayesian semiparametric analysis of semicompeting risks data: investigating hospital readmission after a pancreatic cancer diagnosis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(2), pages 253-273, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xifen Huang & Jinfeng Xu & Hao Guo & Jianhua Shi & Wenjie Zhao, 2022. "An MM Algorithm for the Frailty-Based Illness Death Model with Semi-Competing Risks Data," Mathematics, MDPI, vol. 10(19), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mário de Castro & Ming‐Hui Chen & Yuanye Zhang & Anthony V. D'Amico, 2020. "A Bayesian multi‐risks survival (MRS) model in the presence of double censorings," Biometrics, The International Biometric Society, vol. 76(4), pages 1297-1309, December.
    2. Kyu Ha Lee & Virginie Rondeau & Sebastien Haneuse, 2017. "Accelerated failure time models for semi‐competing risks data in the presence of complex censoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1401-1412, December.
    3. Laurence T Kell & Iago Mosqueira & Henning Winker & Rishi Sharma & Toshihide Kitakado & Massimiliano Cardinale, 2024. "Empirical validation of integrated stock assessment models to ensuring risk equivalence: A pathway to resilient fisheries management," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-21, July.
    4. David Kaplan & Jianshen Chen, 2012. "A Two-Step Bayesian Approach for Propensity Score Analysis: Simulations and Case Study," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 581-609, July.
    5. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    6. Tommi Härkänen & Anna But & Jari Haukka, 2017. "Non-parametric Bayesian Intensity Model: Exploring Time-to-Event Data on Two Time Scales," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 798-814, September.
    7. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    8. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    9. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    10. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    11. Ferraz, V.R.S. & Moura, F.A.S., 2012. "Small area estimation using skew normal models," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2864-2874.
    12. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    13. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    14. Niko Hauzenberger & Florian Huber & Massimiliano Marcellino & Nico Petz, 2025. "Gaussian Process Vector Autoregressions and Macroeconomic Uncertainty," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 43(1), pages 27-43, January.
    15. Ander Wilson & Jessica Tryner & Christian L'Orange & John Volckens, 2020. "Bayesian nonparametric monotone regression," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
    16. Julie Vercelloni & M Julian Caley & Mohsen Kayal & Samantha Low-Choy & Kerrie Mengersen, 2014. "Understanding Uncertainties in Non-Linear Population Trajectories: A Bayesian Semi-Parametric Hierarchical Approach to Large-Scale Surveys of Coral Cover," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    17. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    18. Koop, Gary & Korobilis, Dimitris, 2016. "Model uncertainty in Panel Vector Autoregressive models," European Economic Review, Elsevier, vol. 81(C), pages 115-131.
    19. Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    20. Cristian David Correa-Álvarez & Juan Carlos Salazar-Uribe & Luis Raúl Pericchi-Guerra, 2023. "Bayesian multilevel logistic regression models: a case study applied to the results of two questionnaires administered to university students," Computational Statistics, Springer, vol. 38(4), pages 1791-1810, December.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:112:y:2017:i:c:p:170-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.