IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v89y2016icp187-194.html
   My bibliography  Save this article

Agent-based simulation on tourists’ congestion control during peak travel period using Logit model

Author

Listed:
  • Du, Siyuan
  • Guo, Chunxiang
  • Jin, Maozhu

Abstract

During the peak travel period, the high concentration of tourists in a short time results in great negative influence for the scenic areas. Therefore, increasing attention from both scholars and practitioners of tourism has been paid to the tourists shunt management model during peak travel period, however, the traditional shunt strategies may cause the Matthew Effect, a complex system effect. This paper introduces the Logit model on the basis of the preliminary study, to evaluate the performance of the proposed method, two evaluation indexes of tourists balanced distribution including the variance model and the Gini–Simpson are introduced. Furthermore, the paper takes Jiuzhaigou as an example and constructs the Jiuzhaigou tourist shunt simulation model based on multi-agent simulation platform of NetLogo. Numerical simulations show that the effects based on Logit model is superior to the preliminary study.

Suggested Citation

  • Du, Siyuan & Guo, Chunxiang & Jin, Maozhu, 2016. "Agent-based simulation on tourists’ congestion control during peak travel period using Logit model," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 187-194.
  • Handle: RePEc:eee:chsofr:v:89:y:2016:i:c:p:187-194
    DOI: 10.1016/j.chaos.2015.10.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077915003355
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2015.10.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schwartz, Zvi & Stewart, William & Backlund, Erik A., 2012. "Visitation at capacity-constrained tourism destinations: Exploring revenue management at a national park," Tourism Management, Elsevier, vol. 33(3), pages 500-508.
    2. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    3. O’Connor, A. & Zerger, A. & Itami, B., 2005. "Geo-temporal tracking and analysis of tourist movement," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 69(1), pages 135-150.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Tao & Hu, Wenjie & Liao, Xiaofeng, 2016. "Dynamics of the congestion control model in underwater wireless sensor networks with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 130-136.
    2. Chi Yunxian & Li Renjie & Zhao Shuliang & Guo Fenghua, 2020. "Measuring multi-spatiotemporal scale tourist destination popularity based on text granular computing," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-33, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Wei & Shi, Yuming & Huang, Qiuling, 2014. "Modeling the Chinese language as an evolving network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 268-276.
    2. Yan Qiang & Bo Pei & Weili Wu & Juanjuan Zhao & Xiaolong Zhang & Yue Li & Lidong Wu, 2014. "Improvement of path analysis algorithm in social networks based on HBase," Journal of Combinatorial Optimization, Springer, vol. 28(3), pages 588-599, October.
    3. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    4. Stephanie Rend'on de la Torre & Jaan Kalda & Robert Kitt & Juri Engelbrecht, 2016. "On the topologic structure of economic complex networks: Empirical evidence from large scale payment network of Estonia," Papers 1602.04352, arXiv.org.
    5. Yoshiharu Maeno & Kenji Nishiguchi & Satoshi Morinaga & Hirokazu Matsushima, 2014. "Impact of credit default swaps on financial contagion," Papers 1411.1356, arXiv.org.
    6. Rabbani, Fereshteh & Khraisha, Tamer & Abbasi, Fatemeh & Jafari, Gholam Reza, 2021. "Memory effects on link formation in temporal networks: A fractional calculus approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    7. Gabrielle Demange, 2012. "On the influence of a ranking system," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(2), pages 431-455, July.
    8. Ling-en Wang & Bing Tian & Viachaslau Filimonau & Zhizhong Ning & Xuechun Yang, 2022. "The impact of the COVID-19 pandemic on revenues of visitor attractions: An exploratory and preliminary study in China," Tourism Economics, , vol. 28(1), pages 153-174, February.
    9. Cheng, Ranran & Peng, Mingshu & Yu, Weibin, 2014. "Pinning synchronization of delayed complex dynamical networks with nonlinear coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 426-431.
    10. Tsao, J.Y. & Boyack, K.W. & Coltrin, M.E. & Turnley, J.G. & Gauster, W.B., 2008. "Galileo's stream: A framework for understanding knowledge production," Research Policy, Elsevier, vol. 37(2), pages 330-352, March.
    11. Pier Paolo Saviotti, 2011. "Knowledge, Complexity and Networks," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 6, Edward Elgar Publishing.
    12. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    13. Sanjeev Goyal & Marco J. van der Leij & José Luis Moraga-Gonzalez, 2006. "Economics: An Emerging Small World," Journal of Political Economy, University of Chicago Press, vol. 114(2), pages 403-432, April.
    14. Silva, F.N. & Viana, M.P. & Travençolo, B.A.N. & Costa, L. da F., 2011. "Investigating relationships within and between category networks in Wikipedia," Journal of Informetrics, Elsevier, vol. 5(3), pages 431-438.
    15. Dávid Csercsik & Sándor Imre, 2017. "Cooperation and coalitional stability in decentralized wireless networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(4), pages 571-584, April.
    16. Chung-Yuan Huang & Chuen-Tsai Sun & Hsun-Cheng Lin, 2005. "Influence of Local Information on Social Simulations in Small-World Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-8.
    17. Sun, Bingbin & Yao, Jialing & Xi, Lifeng, 2019. "Eigentime identities of fractal sailboat networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 338-349.
    18. Waseem Akram & Muaz Niazi & Laszlo Barna Iantovics & Athanasios V. Vasilakos, 2019. "Towards Agent-Based Model Specification of Smart Grid: A Cognitive Agent-Based Computing Approach," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 17(3-B), pages 546-585.
    19. Luka Kronegger & Anuška Ferligoj & Patrick Doreian, 2011. "On the dynamics of national scientific systems," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(5), pages 989-1015, August.
    20. Yang, Xu-Hua & Lou, Shun-Li & Chen, Guang & Chen, Sheng-Yong & Huang, Wei, 2013. "Scale-free networks via attaching to random neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3531-3536.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:89:y:2016:i:c:p:187-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.